Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
a) Áp dụng bất đẳng thức AM-GM ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2\sqrt{c^2}=2\left|c\right|=2c\left(c>0\right)\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\\\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\end{matrix}\right.\)
Cộng theo vế: \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\left(đpcm\right)\)
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta được:
\(\dfrac{ab}{a+b}=\dfrac{ab+b^2-b^2}{a+b}=\dfrac{b\left(a+b\right)}{a+b}-\dfrac{b^2}{a+b}=b-\dfrac{b^2}{a+b}\)
Chứng minh tương tự:
\(\left\{{}\begin{matrix}\dfrac{bc}{b+c}=\dfrac{bc+c^2-c^2}{b+c}=\dfrac{c\left(b+c\right)}{b+c}-\dfrac{c^2}{b+c}=c-\dfrac{c^2}{b+c}\\\dfrac{ac}{c+a}=\dfrac{ac+a^2-a^2}{c+a}=\dfrac{a\left(c+a\right)}{c+a}-\dfrac{a^2}{c+a}=a-\dfrac{a^2}{c+a}\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}=a+b+c-\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\right)\le\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)
b)Đặt \(A=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(A=\dfrac{a\left(a+b\right)-a^2}{a+b}+\dfrac{b\left(b+c\right)-b^2}{a+b}+\dfrac{c\left(c+a\right)-c^2}{c+a}\)
\(A=a+b+c-\dfrac{a^2}{a+b}-\dfrac{b^2}{b+c}-\dfrac{c^2}{c+a}\)
Lại có:\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
\(\Rightarrow A\le a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)
\(\Rightarrowđpcm\)
a)Svac-so:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)
b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)
\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)
\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)
Áp dụng BĐT Cô si dạng phân số ta có :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
=> ĐPCM .
b) Vì a,b,c > 0 .
Áp dụng BĐT Cô si ta có :
\(\dfrac{a^2}{b}+b\ge2a\) (1)
Tương tự ta có : \(\dfrac{b^2}{c}+c\ge2b\) (2)
\(\dfrac{c^2}{a}+a\ge2c\) (3)
Cộng từng vế => ĐPCM .
1.
BĐT cần chứng minh tương đương:
\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)
Ta có:
\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)
\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)
Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)
\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)
Do \(a;b;c\ge1\) nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:
\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)
\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Câu 2 em kiểm tra lại đề có chính xác chưa
2.
Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS
Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)
\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)
BĐT cần chứng minh tương đương:
\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
Đúng theo (1)
Dấu "=" xảy ra khi \(a=b=c\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
Bài 1:
Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)
\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)
\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)
\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)
\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Cộng theo vế và rút gọn:
\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)
\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$
a)Áp dụng bđt Cô-si:
\(\dfrac{a}{b}+\dfrac{b}{a}-1+\dfrac{ab}{a^2-ab+b^2}=\dfrac{a^2+b^2-ab}{ab}+\dfrac{ab}{a^2-ab+b^2}\ge2\sqrt{\dfrac{a^2+b^2-ab}{ab}.\dfrac{ab}{a^2-ab+b^2}}=2\)
=>\(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{ab}{a^2-ab+b^2}\ge3\)
Dấu "=" xảy ra khi a=b=1
b) bđt sai rồi