K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Hình bạn tự vẽ nha

Hạ đường cao BH ta có:

Xét tam giác vuông HBA ta có

\(\sin_{30^0}=\frac{1}{2}=\frac{BH}{6}\Rightarrow BH=3\)

\(\cos_{30^0}=\frac{\sqrt{3}}{2}=\frac{AH}{6}\Rightarrow AH=3\sqrt{3}\approx5,2\)

\(CH=AC-AH=8-5,2=2,8\)

Áp dụng định lý Py - ta - go vào tam giác HBC ta có:

\(BC=\sqrt{BH^2+HC^2}=\sqrt{3^2+2,8^2}\approx4,1\)(1)

Xét tam giác HBC ta có:

\(\tan_C=\frac{BH}{CH}=\frac{3}{2,8}\approx1,1\)

\(\Rightarrow\widehat{C}\approx47,72^0\)(2)

Trong tam giác ABC có

\(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-30^0-47,72^0=102,28^0\)(3)

Từ (1)(2)(3)=> ĐPCM

P/s tham khảo nha

Bài 2:

a: AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

=>\(25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔBAC có BM là phân giác

nên MA/AB=MC/BC

=>MA/3=MC/5

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)

=>MA=3cm