Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1,2\right)^2=4\)
⇔\(x^2-2.x.1,2+1,2^2=4\)
⇔\(x^2-2,4x+1,44=4\)
⇔\(x^2-2,4x=4-1,44\)
⇔\(x\left(x-2,4\right)=2,56\)
⇔\(x=2,56\) hoặc \(x-2,4=2,56\)
⇔\(x=2,56\) hoặc \(x=4,96\)
a) \(\left(x-1,2\right)^2=4=2^2\)
\(\Leftrightarrow x-1,2=4\)
\(\Leftrightarrow x=5,2\)
b) \(\left(x+1\right)^3=-125=\left(-5\right)^3\)
\(\Leftrightarrow x+1=-5\)
\(\Leftrightarrow x=-6\)
c) \(\left(x+1,5\right)^8+\left(2,7-y\right)^{10}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\2,7-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
Ta có :
\(\left\{{}\begin{matrix}\left(x+1,5\right)^8\ge0\\\left(2,7-y\right)^{12}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1,5\right)^8+\left(2,7-y\right)^{12}\ge0\)
Mà \(\left(x+1,5\right)^8+\left(2,7-y\right)^{12}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1,5\right)^8=0\\\left(2,7-y\right)^{12}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
Vậy...
a)Dùng bất đắng thức để giải
\(!x+5!\ge0\&\left(3y-4\right)^{2016}\ge0\Rightarrow!x+5!+\left(3y-4\right)^{2016}\ge0\) Đẳng thúc khi \(\hept{\begin{cases}x=-5\\y=\frac{4}{3}\end{cases}}\) nó cuãng là nghiệm của pt
b) tương tự x=-1,5; y=2,7
a: =>x-2,7=0,3 hoặc x-2,7=-0,3
=>x=3 hoặc x=2,4
b: =>|x+1,5|=2,4
=>x+1,5=2,4 hoặc x+1,5=-2,4
=>x=-3,9 hoặc x=0,9
c: =>|2x-3|=1/6
=>2x-3=1/6 hoặc 2x-3=-1/6
=>2x=19/6 hoặc 2x=17/6
=>x=17/12 hoặc x=19/12
d: =>3|2x-5|=7,5+0,8=8,3
=>|2x-5|=83/30
=>2x-5=83/30 hoặc 2x-5=-83/30
=>2x=233/30 hoặc 2x=67/30
=>x=233/60 hoặc x=67/60
e: =>x-y=0 và y+9/25=0
=>x=y=-9/25
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)
Bài 10:
a) (1/3)n = 1/81
=> (1/3)n = (1/3)4
=> n = 4
b) -512/343 = (-8/7)n
=> (-8/7)3 = (-8/7)n
=> 3 = n (hay n = 3)
c) (-3/4)n = 81/256
=> (-3/4)n = (-3/4)4
=> n = 4
d) 64/(-2)n = (-2)3
=> 64/(-2)n = -8
=> (-2)n = -8
=> (-2)n = (-2)3
=> n = 3
Bài 11: (không có y để tìm nhé)
a) (0,4x - 1,3)2 = 5,29
=> (0,4x - 1,3)2 = (2,3)2
=> 0,4x - 1,3 = 2,3
=> 0,4x = 3,6
=> x = 9
b) (3/5 - 2/3x)3 = -64/125
=> (3/5 - 2/3x)3 = (-4/5)3
=> 3/5 - 2/3x = -4/5
=> 2/3x = 7/5
=> x = 21/10
a, đề sai
b) \(\left(x-3\right)^{10}=\left(x-3\right)^{30}\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=-1\\x-3=0\\x-3=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vậy .....
c) \(\left(x+1,5\right)^8+\left(2,7-y\right)^{12}=0\)
Vì: \(\left\{{}\begin{matrix}\left(x+1,5\right)^8\ge0\forall x\\\left(2,7-y\right)^{12}\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\) để bt = 0
=>\(\left\{{}\begin{matrix}\left(x+1,5\right)^8=0\\\left(2,7-y\right)^{12}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+1,5=0\\2,7-y=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
Vậy.............