Cho tam giác ABC nhon, đường cao AH. Gọi D là điểm đối xứng của H qua AB, E là điểm đối xứng của H qua AC. DE cắt AB tại M, cắt AC tại N.
Chứng minh:a) Tam giác EAD cân.
b) HA là tia phân giác góc MHN.
c) AH, BN, CM đồng qui.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: \(AH=AD\left(1\right)\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: \(AH=AE\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
a) Ta có: D và H đối xứng nhau qua AB(gt)
nên AB là đường trung trực của DH
hay AH=AD(1)
Ta có: H và E đối xứng nhau qua AC(gt)
nên AC là đường trung trực của EH
hay AE=AH(2)
Từ (1) và (2) suy ra AD=AE
hay ΔDAE cân tại A
b: Xét tứ giác ABHM có
AM//BH
AM=BH
Do đó: ABHM là hình bình hành
Suy ra: B đối xứng M qua D
giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tok đang hottttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt đó