Cho x và y thuộc tập hợp các số nguyên thỏa mãn x2 + y2 * 3
Chứng tỏ x và y chia hết cho 3
Có ai giúp mk với!!!!!????????
Help me,please!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi, mk chỉ biết bài 3:
Nhân cả 2 vế với 3 ta có:
3S = 1.2.3 +2.3.3 +3.4.3 +......+ 30.31.3
3S= 1.2.3 +2.3.( 4 - 1 ) +3.4. ( 5 - 2 ) +....+ 30.31. ( 32 - 29 )
3S= 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 +.....+ 30.31.32 - 30.31.29
3S= 30.31.32
S = 30.31.32 : 3
S = 9920
Vậy S = 9920
nhờ mn giúp mk bài này vs ạ
mk đang cần gấp !
cảm ơn mn nhiều
Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)
\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)
Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)
Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)
\(\Rightarrow3\ge a^5+b^6+b^5\)
BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\)
Ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)
Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)
Từ (1);(2) \(\Rightarrow\) đpcm
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
15 - | x - 2 | = 12
| x - 2 | = 15 - 12
| x - 2 | = 3
=> x - 2 = 3 hoặc x - 2 = -3
x = 3 + 2 x = (-3) + 2
x = 5 x = -1
Vậy x thuộc { 5;-1}
15-|x-2|=12
=>|x-2|=15-12
=>|x-2|=3
=>x-2=3
x-2=-3
=>x=3+2=5
x=-3+2=-1
=>x thuộc{5,-1}
k đi mk trảlời cho
là sao