Cho tam giác ABC vuông tại A. Điểm I là trung điểm của cạnh BC. Qua I kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại M. Tam giác ABC có thêm điều kiện gì thì AMIN là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) IM // AC, AB \(\perp AC\)
\(\Rightarrow\)IM \(\perp AB\) \(\Rightarrow\)\(\widehat{AMI}=90^0\)
IN // AB, AB \(\perp AC\)
\(\Rightarrow\)IN \(\perp AC\) \(\Rightarrow\)\(\widehat{ANI}=90^0\)
Tứ giác AMIN có: \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)
nên AMIN là hình chữ nhật
b) Hình chữ nhật AMIN là hình vuông
\(\Leftrightarrow\)AI là phân giác \(\widehat{BAC}\)
mà AI đồng thời la trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)\(\Delta ABC\)vuông cân tại A
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
hinh nhu ban viet sai de bai,cau a phai la hinh binh hanh chu
a/ Vì AK // IH nên AI = KH và AK = IH ( vì phần ghi nhớ ở bài 1 đó )
Vì IK // HC nên IK = HC và IH = KC
Xét tam giác AIK và tam giác IKH có:
\(\hept{\begin{cases}AI=KH\\IK:canh\\AK=IH\end{cases}}chung\)
suy ra tam giác AIK = tam giác HKI ( c.c.c )
Xét tam giác IKH và tam giác KHC có :
\(\hept{\begin{cases}IK=HC\\KH:canh\\IH=KC\end{cases}}chung\)
suy ra tam giác HKI = tam giác KHC ( c.c.c )
mà tam giác AIK = tam giác HKI
tam giác HKI = tam giác KHC
suy ra tam giác AIK = tam giac KHC( đpcm )
b/ Vì tam giác AIK = tam giác KHC
nên AK = CK ( vì là 2 cạnh tương ứng )
Vậy :........
hay AI = HK ( vì là 2 cạnh tương ứng )
mà AI = BI ( vì I là tring điểm của AB )
nên BI = HK ( = AI )
Vậy: ......
Vân Khánh đây là bài làm nhé! Nhớ k nghe! Thank you!!!
a) Nối IH
Xét 2 tam giác: \(\Delta\)BIH và \(\Delta\)KHI có
IH cạnh chung
\(\widehat{BIH}\)= \(\widehat{KHI}\)( so le trong do AB // KH)
\(\widehat{IHB}\)= \(\widehat{HIK}\)( so le trong do IK // BC)
suy ra \(\Delta\)BIH = \(\Delta\)KHI (g.c.g)
\(\Rightarrow\)IB = KH (2 cạnh tương ứng)
mà IB = IA nên IA = KH
\(\widehat{AIK}\)= \(\widehat{IBH}\)(đồng vị do IK // BC)
\(\widehat{IBH}\)= \(\widehat{KHC}\)(đồng vị do KH // AB)
suy ra \(\widehat{AIK}\)= \(\widehat{KHC}\)
Xét 2 tam giác: \(\Delta\)AIK và \(\Delta\)KHC có:
IA = HK (cmt)
\(\widehat{AIK}\)= \(\widehat{KHC}\)(cmt)
\(\widehat{IAK}\)= \(\widehat{HKC}\)(đồng vị do HK // AB)
suy ra \(\Delta\)AIK = \(\Delta\)KHC (g.c.g)
b) \(\Delta\)AIK = \(\Delta\)KHC (theo phần a) \(\Rightarrow\)AK = KC (2 cạnh tương ứng)
Xét \(\Delta\)AIK và \(\Delta\)HKI có:
AI = HK (cm)
\(\widehat{AIK}\)= \(\widehat{HKI}\)(so le trong do HK // AB)
IK cạnh chung
suy ra \(\Delta\)AIK = \(\Delta\)HKI (c.g.c)
\(\Rightarrow\)AK = IH (2 cạnh tương ứng)