\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)
giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=) đây là bài giải bằng cách lập pt mà nãy bạn đã đăng nè:v mà giải thì ra vô nghiệm á bạn nên mik ko có làm:v
sẵn thì sửa lun:v
Theo đề bài ta có pt:
\(\dfrac{100}{x}-\dfrac{100}{x+20}=\dfrac{5}{12}\) mới đúng á
ĐK: ` x\ne 0; x \ne -100`
`4800/x-4800/(x+100)=8`
`<=>1/x-1/(x+100) =1/600`
`<=> (x+100-x)/(x(x+100) = 1/600`
`<=> 100/(x(x+100))=1/600`
`<=> x^2+100x = 60000`
\(\left[{}\begin{matrix}x=200\\x=-300\end{matrix}\right.\)
Vậy...
`4800/x-4800/(x+10)=8`
`ĐK:x ne 0,x ne -10`
`pt<=>600/x-600/(x+10)=1`
`<=>(600x+6000-600x)/(x^2+10x)=1`
`<=>6000/(x^2+10x)=1`
`<=>x^2+10x=6000`
`<=>x^2+10x-6000=0`
`Delta'=25+6000=6025`
`<=>x_1=20,x_2=-30`
a: \(\Leftrightarrow\left(\dfrac{x+2001}{5}+1\right)+\left(\dfrac{x+1999}{7}+1\right)+\left(\dfrac{x+1997}{9}+1\right)+\left(\dfrac{x+1995}{11}+1\right)=0\)
=>x+2006=0
=>x=-2006
b: \(\Leftrightarrow\left(\dfrac{x-15}{100}-1\right)+\left(\dfrac{x-10}{105}-1\right)+\left(\dfrac{x-100}{5}-1\right)=\left(\dfrac{x-100}{15}-1\right)+\left(\dfrac{x-105}{10}-1\right)+\left(\dfrac{x-110}{5}-1\right)\)
=>x-105=0
=>x=105
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{30}{60}=0,5\left(ĐKXĐ:x\ne0;x\ne-10\right)\\ \Leftrightarrow\dfrac{100\left(x+10\right)-100x}{x\left(x+10\right)}=\dfrac{0,5x\left(x+10\right)}{x\left(x+10\right)}\\ \Leftrightarrow100x-100x+1000=0,5x^2+5x\\ \Leftrightarrow0,5x^2+5x-1000=0\\ \Leftrightarrow0,5x^2-20x+25x-1000=0\\ \Leftrightarrow0,5x.\left(x-40\right)+25.\left(x-40\right)=0\\ \Leftrightarrow\left(0,5x+25\right)\left(x-40\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}0,5x+25=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-50\\x=40\end{matrix}\right.\\ Vậy:S=\left\{-50;40\right\}\)
a: =>\(\dfrac{2x-4}{2014}+\dfrac{2x-2}{2016}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)
=>\(\dfrac{2x-2018}{2014}+\dfrac{2x-2018}{2016}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\)
=>2x-2018<0
=>x<2019
b: \(\Leftrightarrow\left(\dfrac{3-x}{100}+\dfrac{4-x}{101}\right)>\dfrac{5-x}{102}+\dfrac{6-x}{103}\)
=>\(\dfrac{x-3}{100}+\dfrac{x-4}{101}-\dfrac{x-5}{102}-\dfrac{x-6}{103}< 0\)
=>\(x+97< 0\)
=>x<-97
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
`100/x-100/(x+10)=1/2`
`<=>(100x+1000-100x)/(x^2+10x)=1/2`
`<=>1000/(x^2+10x)=1/2`
`<=>x^2+10x=2000`
`<=>x^2+10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=40,x_2=-50`
Vậy `S={40,-50}`
100x−100x+10=12100x-100x+10=12
⇔100x+1000−100xx2+10x=12⇔100x+1000-100xx2+10x=12
⇔1000x2+10x=12⇔1000x2+10x=12
⇔x2+10x=2000⇔x2+10x=2000
⇔x2+10x−2000=0⇔x2+10x-2000=0
Δ'=25+2000=2025Δ′=25+2000=2025
⇔x1=40,x2=−50⇔x1=40,x2=-50
-> S={40,−50}