Tính:\(\left(-\frac{1}{3}+\frac{5}{6}\right)^2-\frac{-\sqrt{25^2}-\sqrt{49^2}}{\sqrt{36^2+\sqrt{38^2}}}\)
Nhớ giải cho thật kĩ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)
a) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(\sqrt{9\cdot11}-\sqrt{9\cdot2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=3\cdot11-3\sqrt{22}-11+3\sqrt{22}\)
\(=33-11=22\)
b)\(3\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)
\(=\frac{9}{\sqrt{8}}-\frac{7}{\sqrt{2}}+\frac{5}{\sqrt{18}}\)
\(=\frac{9}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)
\(=\frac{27-42+10}{6\sqrt{2}}\)
\(=-\frac{5}{6\sqrt{2}}\)
c)\(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\frac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(=\left(1-\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}+1\right)\)
\(=\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(=1-5=-4\)