K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

Gọi 5 số đó là a; b; c; d; e

Giả sử a<b<c<d<e

\(\Rightarrow d-b\ge2;e-c\ge2\)

Theo đề bài 

\(a+b+c>d+e\)

\(\Rightarrow a>b-d+c-e\ge4\Rightarrow a>5\)

 

7 tháng 1 2017

(Modulo 3, nha bạn.)

Giả sử tồn tại 5 số thoả đề.

Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:

1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó, tổng 3 số này chia hết cho 3 (vô lí).

2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.

Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).

Vậy điều giả sử là sai.