Cho tam giác ABC , M là trung điểm AC . Trên tia đối của tia MB lấy điểm D sao cho BM = MD .
a,Chứng minh : tam giác ABM = tam giác CDM
b,Chứng minh :AB//CD
c,Trên DC kéo dài lấy điiẻm N sao cho CD=CN (N khác C).Chứng minh : BN//AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔCDM có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔDBN có
M là trung điểm của BD(gt)
C là trung điểm của DN(gt)
Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)
Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)
hay BN//AC(đpcm)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Ta có: ΔABM=ΔCDM
nên \(\widehat{ABM}=\widehat{CDM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
B1:
a) Xét ΔABM và ΔCDM có:a) Xét ΔABM và ΔCDM có:
AM = MC (vì M là trung điểm của AC)AM = MC (vì M là trung điểm của AC)
BM = MD (theo giả thiết - cách vẽ)BM = MD (theo giả thiết - cách vẽ)
Góc AMB = góc CMD ( đối đỉnh)Góc AMB = góc CMD ( đối đỉnh)
⇒ ΔABM = ΔCDM (c-g-c) (2 góc tương ứng⇒ ΔABM = ΔCDM (c-g-c) (2 góc tương ứng
b) ⇒ góc ABM = góc MDCb) ⇒ góc ABM = góc MDC
Mà 2 góc này ở vị trí so le trongMà 2 góc này ở vị trí so le trong
⇒ AB // CD (ĐPCM)⇒ AB // CD (ĐPCM)
c) Theo bài ra ta có:c) Theo bài ra ta có:
CD = CNCD = CN
Mà CD = AB ( vì ΔABM = ΔCDM)Mà CD = AB ( vì ΔABM = ΔCDM)
⇒ AB = CN⇒ AB = CN
Xét tam giác ABC và tam giác CNB có:Xét tam giác ABC và tam giác CNB có:
BC chungBC chung
AB = CN (CMT)AB = CN (CMT)
góc ABC = góc NCB ( vì AB // CN )góc ABC = góc NCB ( vì AB // CN )
⇒ ΔABC = ΔNCB⇒ ΔABC = ΔNCB
⇒ AC // BN ( 2 cạnh tương ứng)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
|a-c|<3;|b-c|<2 CMR:|a-b|<5