K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE

4 tháng 3 2022

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

5 tháng 3 2022

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

21 tháng 3 2022

undefinedundefinedundefined

21 tháng 3 2022

undefinedundefinedundefined

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến ứng với cạnh đáy BC

nên AD là đường cao ứng với cạnh BC

Xét ΔEDB vuông tại D và ΔEDC vuông tại D có

ED chung

DB=DC

Do đó: ΔEDB=ΔEDC

Suy ra: EB=EC

b: Xét ΔABE và ΔACE có 

AB=AC

AE chung

EB=EC

Do đó: ΔABE=ΔACE

Suy ra: \(\widehat{ABE}=\widehat{ACE}\)

mà \(\widehat{ABE}=90^0\)

nên \(\widehat{ACE}=90^0\)

Xét ΔABF vuông tại B và ΔACG vuông tại C có

AB=AC

\(\widehat{BAF}\) chung

Do đó: ΔABF=ΔACG

Suy ra: AF=AG

Xét ΔAFG có AF=AG

nên ΔAFG cân tại A

c: Xét ΔAGF có 

\(\dfrac{AB}{AG}=\dfrac{AC}{AF}\)

Do đó: BC//GF

d: Xét ΔBEG vuông tại B và ΔCEF vuông tại C có 

EB=EC

\(\widehat{BEG}=\widehat{CEF}\)

Do đó: ΔBEG=ΔCEF

Suy ra: EG=EF

Ta có: AG=AF

nên A nằm trên đường trung trực của GF\(\left(1\right)\)

Ta có: EG=EF

nên E nằm trên đường trung trực của GF\(\left(2\right)\)

Ta có: MG=MF

nên M nằm trên đường trung trực của GF\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra A,E,M thẳng hàng

mà GC cắt BF tại E

nên AM,BF,CG đồng quy

7 tháng 7 2017