Cho a, b, c, d là các số nguyên bât kì. Chứng tỏ rằng :
S = /a-b/ + /b-c/ + /c-d/ + /d-a/ là một số chẵn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
A + B = (a + b - 5) + (-b - c + 1) = a + b - 5 - b - c + 1 = a + (b - b) - c + (-5 + 1)
= a - c - 4.
C - D = (b - c - 4) - (b - a) = b - c - 4 - b + a = (b - b) - c + a - 4
= a - c - 4.
Vậy A + B = C - D.
Ta luôn có |x - y| và x - y luôn cùng tính chẵn lẻ (x, y nguyên)
Do đó S cùng tính chẵn lẻ với (a - b) + (b - c) + (c - d) + (d - a) (Bỏ GTTĐ)
Ta có:
(a - b) + (b - c) + (c - d) + (d - a)
= a - b + b - c + c - d + d - a
= 0
Vì 0 chẵn => S chẵn (ĐPCM)
Với n>0 thì \(\left|n\right|+n=n+n=2n⋮2\)
Với n=0 thì \(\left|n\right|+n=\left|0\right|+0=0⋮2\)
Với n<0 thì \(\left|n\right|+n=\left(-n\right)+n=0⋮2\)
Vậy với mọi n thì \(\left|n\right|+n⋮2\)
Áp dụng ta có:\(S=\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\)
\(=\left|a-b\right|+\left(a-b\right)+\left|b-c\right|+\left(b-c\right)+\left|c-d\right|+\left(c-d\right)+\left|d-a\right|+\left(d-a\right)⋮2\)
\(\Rightarrow\)S là số chẵn
bn làm hay quá
mà bn đã làm chưa vậy?