K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Ta có:

\(\frac{2^2}{3^2}>\frac{2^2}{2009^2}\)

\(\frac{2^2}{5^2}>\frac{2^2}{2009^2}\)

\(\frac{2^2}{7^2}>\frac{2^2}{2009^2}\)

        .........

\(\frac{2^2}{2009^2}=\frac{2^2}{2009^2}\)

\(\Rightarrow\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}>\frac{2^2}{2009^2}+\frac{2^2}{2009^2}+\frac{2^2}{2009^2}+...+\frac{2^2}{2009^2}=\frac{2^2.1004}{2009^2}=\frac{4016}{2009^2}\)(1004 phân số \(\frac{2^2}{2009^2}\)) . Mà:

\(\frac{4016}{2009^2}< 3\)

=> A < 3

18 tháng 3 2017

a) \(\frac{2}{7}:1=\frac{2x1}{7x1}=\frac{2}{7}\)

\(\frac{2}{7}:\frac{3}{4}=\frac{2}{7}x\frac{4}{3}=\frac{2x4}{7x3}=\frac{8}{21}\)

\(\frac{2}{7}:\frac{5}{4}=\frac{2}{7}x\frac{4}{5}=\frac{2x4}{7x5}=\frac{8}{35}\)

Hai câu còn lại mih k hiểu đề lắm nhé!! 

25 tháng 3 2017

cảm ơn bạn nhiều !!

mình không biết làm hai câu cuối thôi@

cảm ơn bạn lần nữa

10 tháng 5 2015

A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)\(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)\(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)

B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)\(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)\(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Do \(\frac{1}{9^{2010}}

10 tháng 5 2015

có đúng đề không vậy 

 

 

 

 

 

21 tháng 10 2018

\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)

\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)

\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)

\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)

\(M=1-\frac{1}{2010^2}< 1\)

Vậy \(M< 1\)

Chúc bạn học tốt ~ 

13 tháng 12 2015

Xét mẫu thức

 \(2^{2009}>1=>1-2^{2009}<0\)

Xét tử thức ta có :

\(1+2+2^2+...+2^{2008}>0\)

Vì tử >0,mẫu <0

=>A<0 

13 tháng 12 2015

đặt S=1+2+2^2+2^3+2^4+...+2^2007+2^2008

=>2S=2+2^2+2^3+2^4+2^5+...+2^2008+2^2009

=>2S-S=2^2009-1

=>S=2^2009-1

=>A=\(\frac{S}{1-2^{2009}}=\frac{2^{2009}-1}{1-2^{2009}}=-1\)

vậy A<0
 

18 tháng 12 2016

lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?

18 tháng 12 2016

ĐANG CẦN GẤP