K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

2(x2+x+1)2-7(x-1)2=13(x3-1)

<=> 2(x2+x+1)2-7(x-1)2-13(x3-1)=0

<=>2(x2+x+1)2-14(x3-1)+(x3-1)-7(x-1)2=0

<=> 2(x2+x+1)(x2+x+1-7x+7)+(x-1)(x2+x+1-7x+7)=0

<=> (2x2+2x+2)(x2-6x+8)+(x-1)(x2-6x+8)=0

<=> (x2-6x+8)(2x2+3x+1)=0

<=> (x2-4x-2x+8)(2x2+2x+x+1)=0

<=> [x(x-4)-2(x-4)][2x(x+1)+(x+1)]=0

<=> (x-4)(x-2)(x+1)(2x+1)=0

Đến đây dễ rồi nhé bạn

9 tháng 9 2017

đk tự giải nhé 

với x tjỏa mãn đk ta có 

\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)

đặt \(\sqrt{x^3+3x}=a\)

ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)

\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)

\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)

đến đây tự làm nhé

15 tháng 11 2016

a ) \(\left(2x-1\right)\left(x-3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\x-3=0\\x+7=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=3\\x=-7\end{array}\right.\)

Vậy phương trình đã cho các nghiệm \(x=-\frac{1}{2};x=3;x=-7.\)

b ) \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)

Vậy phương trình đã cho các nghiệm \(x=1,x=3\).

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)