cho x,y,a,b là các số thực thỏa mãn
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
CM : \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{ \left( a+b\right)^{1003}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)
\(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)
\(\Leftrightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)
Dấu bằng xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\). Do đó \(\frac{x^2}{a}=\frac{y^2}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow \frac{x^{2006}}{a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{(a+b)^{1003}}\)
\(\Rightarrow \frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{y^{1003}}=\frac{2}{(a+b)^{1003}}\)
Do đó ta có đpcm.
Bài này phải quy đồng rồi áp dụng chớ chớ lỡ a+b=0 thì sao chị :3
Ta có: \(\hept{\begin{cases}x^2+y^2=1\\\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\end{cases}}\)
\(\Leftrightarrow b\left(a+b\right)x^4+a\left(a+b\right)y^4=ab\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow b^2x^4+a^2y^4-2abx^2y^2=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2016}}{a^{1008}}=\frac{y^{2016}}{b^{1008}}=\frac{1}{\left(a+b\right)^{1008}}\)
\(\Rightarrow\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{21008}}=\frac{2}{\left(a+b\right)^{1008}}\)
Em vào câu hỏi tương tự tham khảo:
Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)
Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)
<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)
<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)
<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)
<=> \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)
Khi đó: \(\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{1008}}=2\frac{x^{2016}}{a^{1008}}=\frac{2}{\left(a+b\right)^{1008}}\)
\(\text{Đặt }x^2=m\ge0;y^2=n\ge0\Rightarrow m+n=1\)
\(\text{Ta có: }\frac{m^2}{a}+\frac{n^2}{b}=\frac{\left(m+n\right)^2}{a+b}\Leftrightarrow\left(a+b\right)\left(\frac{m^2}{a}+\frac{n^2}{b}\right)=\left(m+n\right)^2\left(\text{BĐT Bunhiacopki}\right)\)\(\Leftrightarrow m^2+n^2+\frac{b}{a}m^2+\frac{a}{b}n^2=m^2+n^2+2mn\)
\(\Leftrightarrow\frac{b}{a}m^2+\frac{a}{b}n^2-2mn=0\left(1\right)\)
\(\text{+Nếu }\frac{a}{b}< 0\text{ thì (1)}\Leftrightarrow-\left(\sqrt{-\frac{b}{a}m}\right)^2-2mn-\left(\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}\right)^2=0\)
\(\Leftrightarrow\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}=0\Leftrightarrow m=n=0\left(\text{loại}\right)\)
\(\text{Xét }\frac{a}{b}>0;\left(1\right)\Leftrightarrow\left(\sqrt{\frac{b}{a}m}\right)^2-2mn+\left(\sqrt{\frac{a}{b}n}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}-\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\sqrt{\frac{b}{a}m}=\sqrt{\frac{a}{b}n}\)
\(\Leftrightarrow bm=an\Leftrightarrow bx^2=ay^2\left(a,b>0\right)\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\left(\frac{x^2}{a}\right)^{1003}+\left(\frac{y^2}{b}\right)^{1003}=\frac{1}{\left(a+b\right)^{1003}}+\frac{1}{\left(a+b\right)^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\left(đpcm\right)\)