Cho tam giác ABC, trọng tâm G(AB<AC). Qua G vẽ đường thẳng d cắt các cạnh AB,AC ở D và E. Chứng minh rằng
\(\frac{AB}{AD}+\frac{AC}{AE}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)
Gọi M là trung điểm của BC
Ta tính được AG = 2 3 AM = 10cm
Gọi N là trung điểm của AB => MN//AC, MN ⊥ AB
D,I,G thẳng hàng
<=> A G A M = A D A N = 2 3 <=> A D 2 A N = 1 3 <=> A D A B = 1 3
Ta có AD = r nội tiếp = A B + A C - B C 2 <=> A B 3 = A B + A C - B C 2
<=> AB+3AC = 3BC = A B 2 + A C 2
<=> 3AC = 4AB (đpcm)
Áp dụng kết quả trên ta có: AD = A B + A C - B C 2 = 3cm
=> ID = DA = 3cm => IG = DG – ID = 1cm
Vì tam giác ABC cân tại A nên đường trung trực của cạnh đáy BC đồng thời là trung tuyến của tam giác ABC ứng với cạnh BC.
Kết hợp với giả thiết suy ra G là trọng tâm của tam giác ABC.
Gọi trung tuyến ứng với cạnh BC là AM
Giả sử AB < AC
Xét \(\Delta\)AMB và \(\Delta\)AMC có
AM: cạnh chung
BM = CM (gt)
AB < AC (điều giả sử)
Do đó ^AMB < ^AMC
Tiếp tục xét \(\Delta\)GMB và \(\Delta\)GMC có:
GM: cạnh chung
BM = MC (gt)
^AMB < ^AMC (cmt)
Do đó BG < CG
Kết hợp với AB < AC (gt) suy ra AB + BG < AC + CG (trái với gt)
Tương tự AB > AC cũng là điều sai
Vậy AB = AC hay \(\Delta\)ABC cân tại A (đpcm)
Gọi trung tuyến ứng với cạnh BC là AM
Giả sử AB < AC
Xét ΔAMB và ΔAMC có
AM: cạnh chung
BM = CM (gt)
AB < AC (điều giả sử)
Do đó ^AMB < ^AMC
Tiếp tục xét ΔGMB và ΔGMC có:
GM: cạnh chung
BM = MC (gt)
^AMB < ^AMC (cmt)
Do đó BG < CG
Kết hợp với AB < AC (gt) suy ra AB + BG < AC + CG (trái với gt)
Tương tự AB > AC cũng là điều sai
Vậy AB = AC hay ΔABC cân tại A (đpcm)
Phép vị tự tâm G tỉ số -1/2 biến A thành D; biến B thành E; biến C thành F ⇒ biến tam giác ABC thành tam giác DEF.
Đáp án B
Gia sử AB < AC
Vẽ BM , CN // DE , vẽ trung tuyến AF => A;F;G thẳng hàng ; AF = 3/2 AG
Tam giác BMF = tam giác CNF ( g.c.g )
=> MF = NF
Có : BM , CN // DE
=> AB/AD = AM/AG ; AC/AE = AN/AG
=> AB/AD + AC/AE = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3
P/S : tham khảo