tim so nguyen x,y biet
x(xy+2)+y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy - x + 2(y - 1) = 13
=> x.(y - 1) + 2.(y - 1) = 13
=> (y - 1).(x + 2) = 13
Ta có bảng sau:
x + 2 | 1 | -1 | 13 | -13
y - 1 | 13| -13| 1 | -1
x | -1| -3 | 11| -15
y | 14| -12| 2 | 0
Vậy các cặp số (x;y) nguyên thỏa mãn đề bài là: (-1;14) ; (-3;-12) ; (11;2) ; (-15;0)
=> x-1 là ước của 5
=> x-1 = 1;-1;5;-5
*Nếu x-1=1
=> x=1+1=2 (1)
xy+2=5 => xy=3 (2)
Từ (1)và (2) => y=3:2 ( loại vì y nguyên )
Tự xét tiếp các trường hợp khác, đi
Ta có: 5 = -1 . -5
5 = -5 . -1
5 = 1 . 5
5 = 5 . 1
Vậy ta có bảng sau:
x - 1 | -1 | -5 | 1 | 5 |
xy + 2 | -5 | -1 | 5 | 1 |
x | 0 | -4 | 2 | 6 |
y | ( vô nghiệm ) | ( thuộc Q ) | ( thuộc Q ) | ( thuộc Q ) |
Vậy là không có số nào thuộc Z hay phương trình vô nghiệm.
\(x^2+y^2-xy=x+y+2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y-4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=6\)
Vì \(\left(x-y\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-1\right)^2\le6\forall x\)
\(\Rightarrow-\sqrt{6}\le x-1\le\sqrt{6}\)
\(\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Từ đó thay vào tìm các giá trị tương ứng của y.
(x+3).(y+1)=3
--->x+3,y+1 thuộc Ư(3)={1,3,-1,-3}
Ta có bảng sau
x+3 1 -1
y+1 3 -3
y 2 -4
x -2 -4
--->(x,y) thuộc(-2,2),(-4,-4)
a. x+2 và y-3 phải thuộc ước của 5
Ta có bảng sau:
x+2 | 1 | -1 | 5 | -5 |
y-3 | 1 | -1 | 5 | -5 |
x | -1 | -3 | 3 | -7 |
y | 4 | 2 | 8 | -2 |
b. x+1 và xy-1 phải thuộc ước của 3
ta có bảng sau;
x+1 | 1 | -1 | 3 | -3 |
xy-1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y | ko tim dc y | 0 | 2 | 1/2 |