1Tìm GTLN của biểu thức
a)/x+7/+2018
b)/x-1/+/y+3/-2012
2.Tìm GTNH của biểu thức
a)-/+4/+2018
b)93-/x+7/.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{18}=\dfrac{-9}{72}+\dfrac{12}{72}-\dfrac{4}{72}=-\dfrac{1}{72}\)
Câu b đề sai rồi bạn
\(A=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+\left(a+b+c\right)-\dfrac{3}{2}\)
\(A=\dfrac{1}{2}\left(a+b+c+1\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(a+b+c=-1\) (có vô số bộ a;b;c thỏa mãn điều này)
Với mọi a;b;c ta luôn có:
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Leftrightarrow12\ge2A\)
\(\Rightarrow A\le6\)
\(A_{max}=6\) khi \(a=b=c=1\)
\(a,ĐK:x\ne3;x\ne-2\\ b,A=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+2\right)}=\dfrac{x-3}{x+2}\\ c,A\in Z\Leftrightarrow\dfrac{x+2-5}{x+2}=1-\dfrac{5}{x+2}\in Z\\ \Leftrightarrow x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-7;-3;-1;3\right\}\left(tm\right)\)
\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)
\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)
b,\(M\left(x\right)=-3x^3-x^2+2=0\)
Nghiệm xấu lắm bạn
a: Ta có: \(-x^2+4x+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left(x-2\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(-x^2-7x+4\)
\(=-\left(x^2+7x-4\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{65}{4}\right)\)
\(=-\left(x+\dfrac{7}{2}\right)^2+\dfrac{65}{4}\le\dfrac{65}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{2}\)
\(\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{x^2+y^2+2+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)
\("="\Leftrightarrow x=y=0\)
\(\frac{x^2+y^2+3}{x^2+y^2+2}\)
\(=\frac{x^2+y^2+2+1}{x^2+y^2+2}\)
\(=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)
\("="\Leftrightarrow x=y=0\)
VÌ x +7 >,= 0 với mọi x
=> ( x+7) + 2018 > , = 2018 VỚI MỌI X
hay A >,= 2018 VỚI MỌI X
MAX = 2018 VỚI MỌI X
<=> x+ 7 = 0
=> x= -7
vậy max = 2018 <=> x= -7