Tìm giá trị nhỏ nhất của biểu thức:
A = |x-3| + |y+5| + 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left|x-3\right|+\left|y+5\right|+2011\)
\(\hept{\begin{cases}\left|x-3\right|\ge0\\\left|y+5\right|\ge0\end{cases}\Rightarrow\left|x-3\right|+\left|y+5\right|+2011\ge2011}\)
=> Min (A) = 2011 <=> x=3; y= -5
Min: giá trị nhỏ nhất
Vì \(\hept{\begin{cases}|x-3|\ge0\forall x\\|y+5|\ge0\forall x\end{cases}}\)
\(\Leftrightarrow|x-3|+|y+5|\ge0\forall x\)
\(\Leftrightarrow|x-3|+|y+5|+2011\ge2011\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-5\end{cases}}\)
Vậy \(A_{min}=2011\Leftrightarrow\hept{\begin{cases}x=3\\y=-5\end{cases}}\)
\(A=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\dfrac{9\left(x-1\right)}{x-1}}+4=10\)
\(A_{min}=10\) khi \(x=4\)
\(A=x+\frac{9}{x-1}+3\Leftrightarrow x-1+\frac{9}{x-1}+3\)
Áp dụng cosi 2 số đầu ta được :
\(x-1+\frac{9}{x-1}\ge2\sqrt{\left(x-1\right)\frac{9}{x-1}}=6\)
Dễ dàng suy ra : \(A\ge3+6=9\)
Dấu ''='' xảy ra <=> \(x-1=\frac{9}{x-1}\Leftrightarrow\left(x-1\right)^2=9\)
TH1 : \(x-1=3\Leftrightarrow x=4\)( chọn )
TH2 : \(x-1=-3\Leftrightarrow x=-2\)( bỏ vì x > 1 ) theo giả thiết
Vậy GTNN A là 9 <=> x = 4
Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x=7
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
vì |x-2010|\(\ge\)0
(y+2011) 2010\(\ge\)0
=>|x-2010|+(y+2011) 2010\(\ge\)0
=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011
dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0
<=>x=2010 và y=-2011
vậy Amin=2011 khi x=2010 và y=-2011
Có : |x-3| >= 0 ; |y+5| >= 0
=> |x-3|+|y+5| >= 0
=> A = |x-3|+|y+5|+2011 >= 2011
Dấu "=" xảy ra <=> x-3=0 và y+5=0 <=> x=3 và y=-5
Vậy GTNN của biểu thức A = 2011 <=> x=3 và y=-5
Tk mk nha
Ta có \(\left|x-3\right|\ge0;\left|y+5\right|\ge0\):
\(\Rightarrow\left|x-3\right|+\left|y+5\right|\ge0\)
=> A = |x-3|+|y+5|+2011 \(\ge\)2011
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3=0\\y+5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-5\end{cases}}\)
P.s Ai trên 3000 điểm thì ủng hộ nha :))