K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

\(\text{Ta có: }A=x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1.\)\(=x^{2005}-\left(2005+1\right)x^{2004}+\left(2005+1\right)x^{2003}-\left(2005+1\right)x^{2002}+...-\left(2005+1\right)x^2+\left(2005+1\right)x-1\)  \(\text{Mà x=2005 nên: }A=x^{2005}-x^{2005}-x^{2004}+x^{2004}+x^{2003}-x^{2003}-x^{2002}+...-x^3-x^2+x^2+x-1\)

  \(=x-1=2005-1=2004\)

10 tháng 12 2015

Thay x=2005 vào biểu thức, ta được:

20052005-2006*20052004+...+2006*20052-2006*2005-1

=20052005-(2006*20052004-..-2006*20052+2006*2005+1)

Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)

2005A=2006*20052005-..-2006*20053+2006*20052+2005

2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004

2005A-A=2004-2005*2006

2004A=2004-2005*2006

A=(2004-2005*2006)/2004=1-(2005*2006)/2004

=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004

đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý

24 tháng 6 2020

Ta có :

\(x=2005\Rightarrow x+1=2006\)

Thay \(2006=x+1\) vào biểu thức trên ta được : 

\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)

\(=x-1\) mà \(x=2005\)

\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

10 tháng 12 2015

\(A=x^{2005}-2005x^{2004}-x^{2004}+2005x^{2003}+x^{2003}-2005x^{2002}-.....+x^3-2005x^2-x^2+2005x+x-2005+2004\)\(=\left(x-2005\right)x^{2004}-\left(x-2005\right)x^{2003}+\left(x-2005\right)x^{2002}-....+\left(x-2005\right)x^2-\left(x-2005\right)x+\left(x-2005\right)+2004\)\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-......+x^2-x+1\right)+2004\)

Với x = 2005 => x - 2005 =0

=> A =2004

10 tháng 11 2017

sao ao dieu the

a: ĐKXĐ: x+1<>0

=>x<>-1

b: x^2+x=0

=>x=0(nhận) hoặc x=-1(loại)

Khi x=0 thì \(A=\dfrac{2\cdot0-3}{0+1}=-3\)

c: Để A nguyên thì 2x-3 chia hết cho x+1

=>2x+2-5 chia hết cho x+1

=>-5 chia hết cho x+1

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

d: Để A>0 thì (2x-3)/(x+1)>0

=>x>3/2 hoặc x<-1

Toán lớp 6 

1 tháng 9 2020

1) Thay x = 38 vào p ta có P = \(\frac{38+64}{38-36}=\frac{102}{2}=51\)

b) Khi P = 101 => \(\frac{x+64}{x-36}=101\)

=> x + 64 = 101(x -36)

=> x + 64 = 101x - 3636

=> 101x - x = 3636 + 64

=> 100x = 3700

=> x = 37

c) Ta có P = \(\frac{x+64}{x-36}=\frac{x-36+100}{x-36}=1+\frac{100}{x-36}\)

Vì 1 là số tự nhiên => \(\frac{100}{x-36}\inℕ^∗\Leftrightarrow100⋮x-36\Rightarrow x-36\inƯ\left(100\right)\)

=> X - 36 \(\in\left\{1;2;4;5;10;20;25;50;100\right\}\)

=> \(x\in\left\{37;38;40;41;46;56;61;86;136\right\}\)

2) a) Thay x = 26 vào B ta có B = \(64:\left(26-16\right)=64:10=6,4\) 

b) Khi B = 80

=> 64(x - 16) = 80

=> x - 16 = 1,25

=> x = 17,25

c) Để B đạt GTLN

=> x - 16 đạt GTNN

mà x - 6 khác 0

=> x - 16 = 1 

=> x = 17

Khi đó B = 64 : (17 - 16) = 64

Vậy GTLN của B là 64 khi x = 1

4 tháng 7 2023

1) Thay x = 38 vào p ta có P = 38+6438−36=1022=51

b) Khi P = 101 => �+64�−36=101

=> x + 64 = 101(x -36)

=> x + 64 = 101x - 3636

=> 101x - x = 3636 + 64

=> 100x = 3700

=> x = 37

c) Ta có P = �+64�−36=�−36+100�−36=1+100�−36

Vì 1 là số tự nhiên => 100�−36∈N∗⇔100⋮�−36⇒�−36∈Ư(100)

=> X - 36 ∈{1;2;4;5;10;20;25;50;100}

=> �∈{37;38;40;41;46;56;61;86;136}

2) a) Thay x = 26 vào B ta có B = 64:(26−16)=64:10=6,4 

b) Khi B = 80

=> 64(x - 16) = 80

=> x - 16 = 1,25

=> x = 17,25

c) Để B đạt GTLN

=> x - 16 đạt GTNN

mà x - 6 khác 0

=> x - 16 = 1 

=> x = 17

Khi đó B = 64 : (17 - 16) = 64

Vậy GTLN của B là 64 khi x = 1