K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Nhỏ nhất:

D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0

(x + 5)2 = 0

(x + 5)= 02

=> x + 5 = 0

         x   = 0 - 5

         x   = -5

(2y - 6)2 = 0

(2y - 6)2 = 02

=> 2y - 6 = 0

        2y   = 0 + 6

         2y  = 6

            y = 6 : 2

            y = 3

Ta có: D = 0 + 0  + 1 = 1

Lớn nhất:(không có giá trị lớn nhất)

1 tháng 2 2018

GIÚP MÌNH VỚI

LÀM ƠN

31 tháng 1 2018

\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)

dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

vậy GTNN của C là -3 khi x=1, y=-1

26 tháng 1 2017

\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)

...............................................

28 tháng 7 2019

ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x

=> MinA= \(\frac{1}{2}\)\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

27 tháng 8 2016

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

27 tháng 8 2016

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

16 tháng 12 2015

Vì |y + 3| luôn lớn bằng 0 với mọi y

=> 100 - |y + 3| luôn bé bằng 0

=> B luôn bé bằng 0

Dấu "=" xảy ra <=> |y + 3| = 0

=> y + 3 = 0

=> y = -3

Vậy Max B = 100 tại y = -3

16 tháng 12 2015

Ta có - |y - 3| < 0

=> B = 100 - |y - 3| < 100

GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)