cho tam giác abc vuông cân tại a , AB=3cm . gọi M là trung điểm của BC . lấy điểm d thuộc BC ( D khác M) Vẽ BH vuông góc với AD tại H CK vuông góc tại K . cm ak = bh
cmr tam giác KMH vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔACB vuông tại A
mà AD là trung tuyến
nên AD=DC=BD=1/2BC
Xét ΔABH vuông tại H và ΔCAK vuông tại K có
AB=CA
góc HAB=góc KCA
=>ΔABH=ΔCAK
=>AH=CK
b: Xét ΔDCK và ΔDAH có
góc CDK=góc ADH(góc CDA=góc ADB)
DC=DA
góc DCK=góc DAH
=>ΔDCK=ΔDAH
a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
CB chung
\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b) Ta có: ΔBHC=ΔCKB(cmt)
nên HC=KB(hai cạnh tương ứng)
Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
c) Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
d) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
nên OB=OC(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)
Hình bạn tự vẽ
a) CMR: AH = AK:
Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:
AB = AC ( vì tam giác ABC cân tại A )
góc A chung
Do đó: tam giác AHB = tam giác AKC ( ch-gn )
Suy ra: AH = AK ( 2 cạnh tương ứng)
b) CMR: góc KAI = góc HAI:
Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:
AH = AK ( chứng minh câu a )
cạnh AI chung
Do đó: tam giác KAI = tam giác HAI ( ch-cgv)
suy ra: góc KAI = góc HAI ( 2 góc tương ứng )
c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )
Xét tam giác BAM và tam giác CAM, có:
cạnh AM chung
AB = AC ( vì tam giác ABC cân tại A )
góc KAI = góc HAI ( chứng minh câu b )
do đó: tam giác BAM = tam giác CAM ( c-g-c)
suy ra: góc AMB = góc AMC ( 2 góc tương ứng )
ta có: góc AMB + góc AMC = 180 độ ( kề bù )
hay 2. góc AMB = 180 độ
=> 180 độ : 2 = 90 độ
do đó: AM vuông góc BC tại M ( đpcm )
Câu d mình làm sau do máy mình hết pin rồi!
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)