Cm: 1.3.5...39/21.22.23...40=1/2^20 bài 2: cm các phân số sau tối giản a,n+1/2n+3 b,2n+3/4n+8 c,3n+2/5n+3. Giúp mk vs mk đang cần gấp ai lướt qua thấy làm giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản
a) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
b) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
c) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
a)Gọi ƯCLN(n+1;2n+3)=d
=> n+1 chia hết cho d; 2n+3 chia hết cho d
=> 2(n+1)chia hết cho d; 2n+3 chia hết cho d
=>[2n+3-(2n+1)]chia hết cho d
=>2n+3-2n-2 chia hết cho d
(2n-2n)+(3-2)chia hết cho d
1 chia hết cho d => d=1; ƯCLN(n+1;2n+3)=1
Vậy n+1/2n+3 là phân số tối giản với mọi số tự nhiên n
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-1-1+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-\left(1+1\right)+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-2+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-\left(2+2\right)+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2^2+1\)
..........
Làm tương tự như vậy đến hết, ta có D = 1
Vậy D = 1
b)
\(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}\)
\(=\frac{\left(1\times3\times5\times...\times19\right)\times\left(21\times23\times...\times39\right)}{\left(22\times24\times...\times40\right)\times\left(21\times23\times...\times39\right)}\)
\(=\frac{1\times3\times5\times...\times19}{22\times24\times...\times40}\)
\(=\frac{1\times3\times5\times7\times3^2\times11\times13\times3\times5\times17\times19}{2\times11\times2^3\times3\times2\times13\times2^2\times7\times2\times3\times5\times2^5\times2\times17\times2^2\times3^2\times2\times19\times2^3\times5}\)
(Phân tích các số ra thừa số nguyên tố)
\(=\frac{1\times3^4\times5^2\times7\times11\times13\times17\times19}{2^{20}\times11\times3^4\times13\times7\times5^2\times17\times19}\)
\(=\frac{1}{2^{20}}\)
Vậy \(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}=\frac{1}{2^{20}}\)
P/S: Câu b mình không chắc đâu nhé
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản