K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét(O) có

CM,CA là tiếp tuyến

nên CM=CA và OC là phân giác của góc AOM(1)
Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

CD=CM+MD

=>CD=AC+BD

c: AC*BD=CM*MD=OM^2=R^2 ko đổi

d: CM=CA

OM=OA

=>OC là trung trực của AM

mà H nằm trên trung trực của AM

nên O,H,C thẳng hàng

29 tháng 7 2021

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

30 tháng 11 2021

b: Xét (O) có

EK là tiếp tuyến

EA là tiếp tuyến

Do đó: EK=EA

Xét (O) có

FK là tiếp tuyến

FB là tiếp tuyến

Do đó: FK=FB

Ta có: EK+KF=EF

hay EF=AE+BF