Cho nửa đường tròn tâm O đường kính AB. Ax, By vuông góc với AB tại A, B( Ax, By cùng thuộc 1 mặt phẳng bờ AB có chứa nửa đường tròn). Một góc zOt bằng 90 độ quay quanh O cắt Ax, By tại C và D. Chứng minh CD là tiếp tuyến của đường tròn (O).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét(O) có
CM,CA là tiếp tuyến
nên CM=CA và OC là phân giác của góc AOM(1)
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
CD=CM+MD
=>CD=AC+BD
c: AC*BD=CM*MD=OM^2=R^2 ko đổi
d: CM=CA
OM=OA
=>OC là trung trực của AM
mà H nằm trên trung trực của AM
nên O,H,C thẳng hàng
c) BM cắt Ax tại E.BC cắt MH tại I
Vì AB là đường kính nên \(\angle AMB=90\)
Vì CM,CA là tiếp tuyến nên \(CM=CA\)
Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE
Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)
mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm
b: Xét (O) có
EK là tiếp tuyến
EA là tiếp tuyến
Do đó: EK=EA
Xét (O) có
FK là tiếp tuyến
FB là tiếp tuyến
Do đó: FK=FB
Ta có: EK+KF=EF
hay EF=AE+BF