Tìm x biết {2/(11.16)+2/(16.21)+2/(21+26)+...+2/(231.236)}.x=45/1298
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy dãy có quy luật như sau:
Số thứ nhất là: \(\dfrac{2}{11.16}=\dfrac{2}{\left(5.2+1\right)\left(5.3+1\right)}\)
Số thứ hai là: \(\dfrac{2}{16.21}=\dfrac{2}{\left(5.3+1\right)\left(5.4+1\right)}\)
...
Số thứ 45 là: \(\dfrac{2}{\left(5.46+1\right)\left(5.47+1\right)}\)=\(\dfrac{2}{231.236}\)
Đặt A = \(\dfrac{2}{11.16}+\dfrac{2}{16.21}+...+\dfrac{2}{231.236}\)
( A là tổng của 45 số hạng đầu tiên của dãy )
Ta có: A=\(2\left(\dfrac{1}{11.16}+\dfrac{1}{16.21}+...+\dfrac{1}{231.236}\right)\)
= \(2.\dfrac{1}{5}\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{231}-\dfrac{1}{236}\right)\)
= \(\dfrac{2}{5}\left(\dfrac{1}{11}-\dfrac{1}{236}\right)\)
= \(\dfrac{2}{5}.\dfrac{225}{2596}\)
= \(\dfrac{45}{1298}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
Vậy \(A=\frac{5}{66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=5.\left(\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\right)\)
\(=5.\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{24}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\frac{5}{66}\)
\(=\frac{25}{264}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
Ta có :
\(A=\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+...+\frac{5^2}{91.96}\)
\(A=5\left(\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{91.96}\right)\)
\(A=5\left(\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{91}-\frac{1}{96}\right)\)
\(A=5\left(\frac{1}{6}-\frac{1}{96}\right)\)
\(A=5.\frac{5}{32}\)
\(A=\frac{25}{32}\)
Vậy \(A=\frac{25}{32}\)
Chúc bạn học tốt ~
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
= \(5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
=\(5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)=\(5\left(1-\frac{1}{26}\right)\)
=\(5.\frac{25}{26}\)
=\(\frac{125}{26}\)
\(\dfrac{5x}{1.6}+\dfrac{5x}{6.11}+\dfrac{5x}{11.16}+\dfrac{5x}{16.21}+\dfrac{5x}{21.26}+\dfrac{5x}{26.31}=1\)
\(=x\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\right)=1\)
\(=x\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\right)=1\)
\(=x\left(1-\dfrac{1}{31}\right)=1\)
\(\Rightarrow x=1:\left(1-\dfrac{1}{31}\right)=\dfrac{31}{30}\)
E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\) = 5*(1-\(\frac{1}{31}\) ) =5*\(\frac{30}{31}\) =\(\frac{150}{31}\)