K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

a)\(\text{ĐKXĐ:}\hept{\begin{cases}x^3-4x\ne0\\6-3x\ne0\\x+2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\mp2\end{cases}}\)

\(M=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

    \(=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

     \(=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right].\frac{x+2}{6}\)

    \(=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

    \(=\frac{1}{x+2}\)

b) /x/= \(\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

*\(\text{Với }x=\frac{1}{2}\text{ta có pt:}\)

  \(M=\frac{1}{x+2}=\frac{1}{\frac{1}{2}+2}=\frac{2}{5}\)

*\(\text{Với x= -1/2 ta có pt:}\)

 \(M=\frac{1}{x+2}=\frac{1}{-\frac{1}{2}+2}=\frac{2}{3}\)

27 tháng 1 2018

a)      = (\(\frac{x^2}{x\left(x^2\right)-4}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\)):(x-2+\(\frac{10-x^2}{x+2}\))

           =(\(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}+\frac{-6}{3\left(x-2\right)}+\frac{1}{x+2}\)) :(x-2+\(\frac{10-x^2}{x+2}\))

           =(\(\frac{3x^2-6x\left(x+2\right)+\left(x-2\right)3x}{3x\left(x-2\right)\left(x+2\right)}\)) :(\(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\))

            =(\(\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}\)):(\(\frac{x^2-4+10-x^2}{x+2}\))

             =\(\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\):\(\frac{6}{x+2}\)

             =\(\frac{-6}{\left(x-2\right)\left(x+2\right)}\):\(\frac{6}{x+2}\)

             =\(\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

               =\(\frac{-1}{x-2}\)

  Vậy M=\(\frac{-1}{x-2}\)

b)Vì /x/ =1/2 nên x=1/2 hoặc x=-1/2Thay x=1/2 vào M ta được;

     \(\frac{-1}{\frac{1}{2}-2}\)=\(\frac{2}{3}\)

  Thay x=-1/2 vào M ta được:

\(\frac{-1}{-\frac{1}{2}-2}\)=\(\frac{2}{5}\)

    Vậy \(M\in\)\(\hept{\begin{cases}\\\end{cases}\frac{2}{5};\frac{2}{3}}\)khi /x/=1/2

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)

3 tháng 2 2020

\(ĐKXĐ:x\ne0;x\ne\pm2\)

a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{1}{2-x}\)

b) Để M đạt giá trị lớn nhất

\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất

\(\Leftrightarrow x\)đạt giá trị lớn nhất

Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)

5 tháng 2 2020

玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường

12 tháng 2 2018

a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))

- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.

- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)

b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013

12 tháng 2 2018

giải ra luôn đi bn mk lm r mà ra kết quả kiểu j ik

24 tháng 5 2021
Gửi bạn....

Bài tập Tất cả

24 tháng 5 2021

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)

\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).

Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).

3 tháng 10 2020

\(ĐK:x\ne\pm1;x\ne0;x\ne3\)

Với \(x\ne\pm1;x\ne0;x\ne3\)thì\(M=\frac{x^3+2x^2-x-2}{x^3-2x^2-3x}\left[\frac{\left(x+2\right)^2-x^2}{4x^2-4}-\frac{3}{x^2-x}\right]=\frac{x^2\left(x+2\right)-\left(x+2\right)}{\left(x^3-x\right)-\left(2x^2+2x\right)}\left[\frac{x^2+4x+4-x^2}{4x^2-4}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)}\left[\frac{4\left(x+1\right)}{4\left(x+1\right)\left(x-1\right)}-\frac{3}{x\left(x-1\right)}\right]=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-3x\right)}\left[\frac{1}{x-1}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-3\right)}.\frac{x-3}{x\left(x-1\right)}=\frac{x+2}{x^2}\)

M = 3 \(\Leftrightarrow\frac{x+2}{x^2}=3\Leftrightarrow3x^2-x-2=0\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}\)

Mà \(x\ne1\)(theo điều kiện) nên x =-2/3

12 tháng 5 2019

\(A=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left[x-2+\frac{10-x^2}{x+2}\right]\) ĐKXĐ : \(x\ne0;x\ne\pm2\)

\(A=\left[\frac{x^2}{x\left(x+2\right)\left(x-2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\left[\frac{3x^2}{3x\left(x+2\right)\left(x-2\right)}-\frac{6x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}+\frac{3x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}\right]:\frac{6}{x+2}\)

\(A=\left[\frac{3x^2-6x^2-12x+3x^2+6x}{3x\left(x+2\right)\left(x-2\right)}\right].\frac{x+2}{6}\)

\(A=\frac{-x}{3x\left(x-2\right)}\)

\(A=\frac{-1}{3x-6}\)