Tam giác ABC, A',B',C' là các điểm lần lượt thuộc cạnh BC, CA, AB sao cho : \(\frac{A'B}{A'C}=\frac{B'C}{B'A}=\frac{C'A}{C'B}\).CMR : Các tam giác ABC và A'B'C' có cùng trọng tâm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng không biết nhưng nếu bạn nghĩ như vậy thì hãy thử làm xem ạ!
a)Xét \(\Delta\) NAM và \(\Delta\)BAC có:
\(\frac{BA}{AC}=\frac{4}{5};\frac{NA}{AM}=\frac{4}{5}\)
^A_chung
Vậy\(\Delta\)NAM đồng dạng\(\Delta\) BAC (c.g.c)
=> đpcm
b, Xét \(\Delta\)NAB và \(\Delta\)MAC ta có :
\(\frac{AM}{AC}=\frac{1}{3};\frac{AN}{AB}=\frac{1}{3}\)
\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
^A_chung
Vậy \(\Delta\)NAB đồng dạng với \(\Delta\)MAC (c.g.c)
=> ^ANB = ^AMC
=> \(\Delta\)BOM đồng dạng với \(\Delta\)COM(gg)
Vì có ^ABN = ^ACM ; ^MOB = ^NOC (đđ)
=> \(\frac{OM}{OB}=\frac{ON}{OC}\Rightarrowđpcm\)
Chó DOA