K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)

= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)

Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5

=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)

Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )

=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)

Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> (p-1).(p+1) chia hết cho 8

=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)

Từ (1) và (2) => a^5-a chia hết cho 40

Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40

=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40

Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40

Tk mk nha

=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)

=>5(a^3+b^3+c^3+d^3) chia hết cho 6

=>a^3+b^3+c^3+d^3 chia hêt cho 6

a^3-a=a(a+1)(a-1) chia hết cho 3!=6

b^3-b=b(b+1)(b-1) chia hết cho 3!=6

c^3-c=c(c+1)(c-1) chia hết cho 3!=6

d^3-d=d(d+1)(d-1) chia hết cho 3!=6

=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6

=>a+b+c+d chia hết cho 6

13 tháng 2 2022

cho minh hỏi bài này với ah.

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

22 tháng 1 2021

Bài 1:

a)10234; 10236; 10238; 10246; 10248

b)10236; 10239; 12346; 12349; 13458

c) 12345; 10235; 10245; 12370; 14605

28 tháng 12 2021

a. D

b. B

28 tháng 12 2021

D

B

a) 64 ; 1428 ; 364 ; 32 460 ; 6500

b) 745 ; 887 ; 1965 

c) 32 460 ; 6500 ; 745 ; 1965

d) 32 460 ; 6500

e) 1428 ; 32 460 

g) 32 460 ; 1965

30 tháng 8 2021

Cho các số:64,745,887,1428,364,1965,32460,6500 .Trong các số đã cho:

a)Các số chia hết cho 2: 65,1428,364,32460,65000

b)Các số không chia hết cho 2: 745,887,746

c)Các số chia hết cho 5: 32460,65000,1965

d)Các số chia hết cho 2 và 5 là: 32460,65000

e)Các số chia hết cho 2 và 3 là:1428,1965,32460,65000

g)Các số chia hết cho 3 và 5 là :32460,1965

Chúc em học tốt!

  

25 tháng 1 2017

k minh minh giai cho