cho 4a + 3b +4c =22 tìm min P= a +b+c+1/2a+2/b+3/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó (2a + 3c)(2b - 3d)
= (2bk + 3dk)(2b - 3d)
= k(2b + 3d)(2b - 3d) (1)
(2a - 3c)(2b + 3d)
= (2bk - 2dk)(2b + 3d)
= k(2b - 3d)(2b + 3d) (2)
Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)
b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)
Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)
Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)
Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)
Câu 2 cũng tương tự nên tự làm đi
Sẵn tiện mk chỉ cho bn luôn dạng này nhé.
Phân tích:
Với \(\alpha,\beta,\gamma>0\) thỏa \(\alpha< 2,\beta< 3,\gamma< 4\) ta có:
\(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left[\left(2-\alpha\right)a+\dfrac{3}{a}\right]+\left[\left(3-\beta\right)b+\dfrac{9}{2b}\right]+\left[\left(4-\gamma\right)c+\dfrac{4}{c}\right]+\left(\alpha a+\beta b+\gamma c\right)\)
\(\ge2\sqrt{3.\left(2-\alpha\right)}+2\sqrt{\dfrac{9}{2}.\left(3-\beta\right)}+2\sqrt{4.\left(4-\gamma\right)}+\left(\alpha a+\beta b+\gamma c\right)\)
Chọn \(\alpha,\beta,\gamma\) (thỏa đk trên) sao cho:
\(\left\{{}\begin{matrix}\left(2-\alpha\right)a=\dfrac{3}{a}\\\left(3-\beta\right)b=\dfrac{9}{2b}\\\left(4-\gamma\right)c=\dfrac{4}{c}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{2\left(3-\beta\right)}}\\c=\sqrt{\dfrac{4}{\left(4-\gamma\right)}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{6-4\alpha}}\\c=\sqrt{\dfrac{4}{4-3\alpha}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)
Ta có: \(a+2b+3c\ge20\). Xác định điểm rơi: \(a+2b+3c=20\)
\(\Rightarrow\sqrt{\dfrac{3}{2-\alpha}}+2\sqrt{\dfrac{9}{6-4\alpha}}+3\sqrt{\dfrac{4}{4-3\alpha}}=20\)
Giải ra ta có \(\alpha=\dfrac{5}{4}\Rightarrow\beta=\dfrac{5}{2};\gamma=\dfrac{15}{4}\)
Lời giải:
Ta có: \(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{5a}{4}+\dfrac{5b}{2}+\dfrac{15c}{4}\right)\)
\(\ge^{Cauchy}2\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}.\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}.\dfrac{4}{c}}+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(=3+3+2+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(\ge8+\dfrac{5}{4}.20=33\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Vậy \(MinA=33\), đạt được khi \(a=2;b=3;c=4\)