Cứng minh đẳng thức sau : Trong một tam giác vuông bình phương mỗi cạnh góc vuông bằng cạnh huyền nhân với hình chiếu của cạnh đó lên cạnh huyền.( không dùng tam giác đồng dạng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 tam giác đó lần lượt là `\DeltaABC,\DeltaA'B'C'`
Cạnh góc vuông là cạnh huyền của 2 tam giác lần lượt là `AB,BC` và `A'B',B'C`
Xét tam giác `\DeltaABC` và `\DeltaA'B'C'`:
`(AB)/(BC)=(A'B')/(B'C')`
`\hat{BAC}=\hat{B'A'C'}=90^o`
`=>\DeltaABC~\DeltaA'B'C'`
Gọi 2 cạnh tam giác vuông là b và c với \(\dfrac{b}{c}=\dfrac{3}{4}\) \(\Rightarrow b=\dfrac{3}{4}c\)
Cạnh huyền là a với \(a=9,6\left(cm\right)\)
Áp dụng định lý Pitago:
\(b^2+c^2=a^2\Rightarrow\left(\dfrac{3}{4}c\right)^2+c^2=\left(9,6\right)^2\)
\(\Rightarrow c=7,68\left(cm\right)\)
\(b=\dfrac{3}{4}c=5,76\left(cm\right)\)
Áp dụng hệ thức lượng:
\(b^2=ab'\Rightarrow b'=\dfrac{b^2}{a}=3,456\left(cm\right)\)
\(c'=a-b'=6,144\left(cm\right)\)
đường cao tương ứng với cạnh huyền =9,6 chứ ko phải cạnh huyền= 9,6
Gọi cạnh huyền là a, 2 cạnh góc vuông là b và c với giả sử \(b\ge c\)
Giả thiết: \(\left\{{}\begin{matrix}h=12\\b'-c'=7\end{matrix}\right.\)
Áp dụng hệ thức lượng:
\(h^2=b'.c'\Leftrightarrow12^2=\left(c'+7\right)c'\)
\(\Leftrightarrow\left(c'\right)^2+7c'-144=0\Rightarrow\left[{}\begin{matrix}c'=9\\c'=-16\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow b'=16\) \(\Rightarrow a=b'+c'=25\)
\(b^2=a.b'\Rightarrow b=\sqrt{a.b'}=20\)
\(c=\sqrt{a.c'}=15\)
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Chứng minh rằng trong tam giác vuông, bình phương trung tuyến ứng với cạnh góc vuông= bình phương cạnh huyền trừ 3/4 cạnh góc vuông đó có cô loan giải đó