Cho Tam giác ABC nhọn và AB , AC có đường cao AH . Kéo dài AH thêm một đoạn HD bằng với HA . So sanh Tam giác ABH và Tam giác BHD , So sánh Tam giác ACH và Tam giác CDH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
AH=DH
Do đó: ΔABH=ΔDBH
Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
1. xét tam giác ABD và tam giác AED có
AE = AD ( gt)
góc BAD = góc EAD ( gt )
cạnh AD chung
dó đó tam giác ABD= tam giác AED
Hình vẽ:
Giải:
Xét tam giác ABH và tam giác DBH, ta có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(HA=HD\left(gt\right)\)
HB là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\) (Hai cạnh góc vuông)
Lại xét tam giác ACH và tam giác DCH, ta có:
\(\widehat{AHC}=\widehat{DHC}=90^0\)
\(HA=HD\left(gt\right)\)
HC là cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\) (Hai cạnh góc vuông)
Chúc bạn học tốt!
1: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
HA=HD
Do đó: ΔABH=ΔDBH
2: Xét ΔACH vuông tại H và ΔDCH vuông tại H có
CH chung
HA=HD
Do đó: ΔACH=ΔDCH