Tìm các số tự nhiên x thỏa mãn 10000<x< 15000. Và khi chia x cho 393 cũng như 655 đều có số dư 210?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: 7x7 = 0
49x = 0
=> x = 0
=> A = {0}
b) ta có: 0.x = 0
mà x là số tự nhiên
=> x thuộc N
=> B = { x thuộc N}
c) ta có: x + 2 = x - 2
=> x - x = - 2 - 2
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow C=\left\{\varnothing\right\}\)
=>x<11/10+67/30-7/60
=>x<66/60+134/60-7/60=193/60
mà x tự nhiên
nên \(x\in\left\{0;1;2;3\right\}\)
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
mk cho bài kham khảo nha :
a, (2n+7)/(n+1)=(2(n+1)+5)/(n+1)=2+5/(n+1)
Để (2n+7) chia hết (n+1) thì 5 chia hết cho n+1 hay n+1 là ước của 5
=>n+1 € {-5, -1 ,1, 5}
=>n € {-6,-2, 0,4}
Do n là STN=> n €{0,4}
b , n+2 chia hết cho (7-n) =>(n+2)(2-n) chia hết cho (7-n)
hay 4-n^2 chia hết cho 7-n => (4-n^2)/(7-n)=(49-n^2-45)/(7-n)
=>((7-n)(7+n)-45)/(7-n)=(7+n)-45/(7-n)
(n+2) chia hết (7-n) thì 45 chia hết cho (7-n)
=>7-n € {-45 ,-9, -5,-3,-15,-1,1,3,9,15,45}
=>n € {52,16,12,20,8,6,4,-2,-8,-38}
Do n là STN => n €{4,6,8,12,16,20,52}
:D