K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

13 tháng 3 2022

a) Xét \(\Delta ABH\) vuông tại H và \(\Delta ACH\text{vuông tại H}:\)

AB = AC \((\Delta ABC\text{cân tại A}).\)

\(\widehat{B}=\widehat{C}\) \((\Delta ABC\text{cân tại A}).\)

\(\Rightarrow\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn).

b) Xét \(\Delta ABC\) cân tại A:

AH là đường cao \(\left(AH\perp BC\right).\)

\(\Rightarrow\) AH là phân giác \(\widehat{BAC}.\)

c) Ta có: BH = CH = \(\dfrac{1}{2}BC=\dfrac{1}{2}8=4\left(cm\right).\)

Xét \(\Delta ABH:\)

\(AB^2=AH^2+BH^2\left(Pytago\right).\\ \Rightarrow AB^2=3^2+4^2.\\ \Rightarrow AB=5\left(cm\right).\)

Mà AB = AC (\(\Delta ABC\) cân tại A).

\(\Rightarrow AC=5\left(cm\right).\)

7 tháng 7 2017

23 tháng 1 2022

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

30 tháng 1 2022

đề bài có lỗi ko bạn ? 

a, Vì tam giác ABC cân tại A

AH là đường cao nên đồng thời là đường phân giác 

=> ^BAH = ^CAH 

b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến 

=> HB = HC = BC/2 = 4 cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)

c, Xét tam giác AEH và tam giác ADH ta có : 

^EAH = ^DAH (cmt) 

AH_chung 

^AEH = ^ADH = 900

Vậy tam giác AEH = tam giác ADH ( ch - gn ) 

=> AE = AD ( 2 cạnh tương ứng ) 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC 

=> ED // BC 

31 tháng 1 2022

mình cx k bt nx , tại thấy cô giao đề như thế nên mình cx chỉ bt lm theo thôi , và cảm ơn bn rất rất nhiều nha , mình đang bị bí ở bài này :3

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔEAH=ΔFAH

Suy ra: HE=HF

hay ΔHEF cân tại H

c: Xét ΔACK và ΔABK có

AC=AB

\(\widehat{CAK}=\widehat{BAK}\)

AK chung

Do đó: ΔACK=ΔABK

Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)

=>BK\(\perp\)AB

hay BK//EH

27 tháng 2 2022

em cảm ơn ạ