K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) xét tam giác ABD và tam giác BMD có:

       góc B1 = góc B2 (gt)

       BD chung

        góc A = góc M = 900

=> tam giác ABD = tam giác BMD (g.c.c)

=> AB = BM (cạnh tương ứng)

=> tam giác ABM cân tại B

b) bó tay

4 tháng 6 2016

cảm ơn bạn nha

7 tháng 3 2020

a) tự xét tam giác zuông ABD = tam giác zuông MBD( cạnh huyền - góc nhọn )

=>AB=AM

=> Tam giác ABM cân 

b)Tự xét tam giácAEC= ENC 

=>CN=CA

khi đó AB+AC=BM+CN

=> BM+MC+MN=BC+MN

=>MN=AB+BC-BC

c) tam giác AMB cân

=> góc AMB =\(\frac{180^0-\widehat{ABC}}{2}=90^0-\frac{\widehat{ABC}}{2}\)

từ ANC cân ở N ( tự cm)

=> góc ANB =180-góc ACB /2=90 độ -ACB/2

trong tám giác AMN có

\(\widehat{MAN}=180^0-\widehat{AMB}-\widehat{ANC=180^0-\left(90^0-\frac{\widehat{ABC}}{2}\right)-\left(90^0-\frac{\widehat{ACB}}{2}\right)}\)

=>\(\widehat{\widehat{MAN}=\frac{\widehat{ABC}}{2}+\frac{ACB}{2}=\frac{90}{2}=45^0}\)

zì tam giác ABC zuông tại A nên góc ABC +ACB=90 độ 

d) zì tam giac AMB cân ở B nên đường phân giác BD đồng thời là đường cao

=>BD\(\perp AM\)hay \(GI\perp AK\)

Mặt khác tam giác ANC cân ở C ( cái này cậu tự cm ở trên mình bảo ấy )

do đó đường phân giác CE đồng thời là đường cao

=>\(CE\perp AN=>KI\perp AG\)

trong tam giác AKG có 2 đường cao xuất phát từ G , K cắt nhau tại I

=> I là trực tâm của tam giác AKG

=>\(AI\perp GK\)ở H nên góc AHG=90 độ

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
5 tháng 8 2021

Bài 3: 

undefined

undefined

5 tháng 8 2021

Bài 5: 

undefined

Xét ΔABC vuông tại A

Áp dụng Pytago ta có:

BC2 = AB2 + AC2 

= 242 + 322

BC = 40

DE là trung trực của BC

⇒ E là trung điểm của BC; DE vuông góc với BC tại E

⇒ EC = BC/2 = 40/2 = 20

Xét ΔCED và ΔCAB có:

∠CED = ∠CAB = 90o

∠C chung

⇒ ΔCED đồng dạng ΔCAB

⇒ CE/CA = ED/AB

⇒ 12/32 = ED/24

⇒ ED = 9