cho tam giác ABC nội tiếp đường tròn (O). các đường thẳng BO và CO lần lược cắt đường tròn (O) tai E va F a, CM AF//BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
Nguyên đề thi Toán lớp 9 học kỳ .Có cả phần tính ddieemr luôn nha
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
Mk vẽ hình r nhưng ko bít đăng !
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
a: góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
góc BFC=góc BEC=90 dộ
=>BFEC nội tiếp
b: góc FEB=góc BAD
góc DEB=góc FCB
mà góc BAD=góc FCB
nên góc FEB=góc DEB
=>EB là phân giác của góc FED
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
=>OA vuông góc IK
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
do ΔABC đều
BE và CF là tia phân giác của góc B góc C
nên ∠B1=∠B2=∠C1=∠C2 ⇒ AE=AF=BF=CE
∠FAB=∠B1
⇒AF//BE