Tìm các số thực m để 2 đường thẳng y=m^2-2m và y=3mx song song với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) d1//d2 ⇔\(\left\{{}\begin{matrix}3m=2m-2\\7\ne-5\end{matrix}\right.\)
⇔ m=-2
b) d1 và d2 không thể trùng nhau vì
Đk để d1 trùng d2 là \(\left\{{}\begin{matrix}a=a'\\b=b'\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}3m=2m-2\\7=-5\end{matrix}\right.\)(vô lí)
Đường thẳng y = (m2 – 3)x + 2m – 3 song song với đường thẳng y = x + 1 khi và chỉ khi:
Chọn C.
Cho hàm số y = mx + 4 và y = (2m - 3)x - 2. Tìm m để đồ thị của hai hàm sốđãhị của hai hàm số làa, Hai đường thẳng cắt nhau, Hai đường thẳng songsong với nhau , Hai đường thẳng trùng nhau
Lời giải:
Để $y=m^2x+m+2$ song song với $y=x+3$ thì:
\(\left\{\begin{matrix}
m^2=1\\
m+2\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m=\pm 1\\
m\neq 1\end{matrix}\right.\Leftrightarrow m=-1\)
2 hàm số bậc nhất \(y=mx+3,y=\left(2m+1\right)x-5\left(đk:m\ne0,m\ne-\dfrac{1}{2}\right)\)
a) Để 2 đường thẳng song song với nhau thì:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=2m+1\\3\ne-5\left(luôn.đúng\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=-1\end{matrix}\right.\)
b) Để 2 đường thẳng cắt nhau:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne2m+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne-1\end{matrix}\right.\)
c) Để 2 đường thẳng vuông góc với nhau:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\left(2m+1\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\2m^2+m+1=0\left(VLý.do.2m^2+m+1=2\left(m+\dfrac{1}{4}\right)^2+\dfrac{7}{8}>0\right)\end{matrix}\right.\)
Vậy 2 đường thẳng này không vuông góc với nhau với mọi m
\(a,\Leftrightarrow\left\{{}\begin{matrix}m=2m+1\\-5\ne3\end{matrix}\right.\Leftrightarrow m=-1\\ b,\Leftrightarrow m\ne2m+1\Leftrightarrow m\ne-1\\ c,\Leftrightarrow m\left(2m+1\right)=-1\\ \Leftrightarrow2m^2+m+1=0\\ \Delta=1-8< 0\\ \Leftrightarrow m\in\varnothing\)
Vậy 2 đt không thể vuông góc nhau
b: Để hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m^2-2=2\\1-m< >3\end{matrix}\right.\Leftrightarrow m=2\)
Để hai đt song song với nhau thì:
\(\left\{{}\begin{matrix}m^2=3m\\-2m\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-3\right)=0\\m\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=3\\m=0\end{matrix}\right.\\m\ne0\end{matrix}\right.\)\(\Rightarrow m=3\)
Vậy...