Cho tam giác ABC vuông tại A có AB=5cm, AC=12cm, vẽ AH vuông góc BC.
a) Tính BC và AH
b) Qua H kẻ HE vuông góc AB, HF vuông góc AC. Tính EF
c) M và N là trung điểm của HB và HC, tính diện tích tứ giác MNFE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác AHC;có:
AH: cạnh chung
AB=AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( =90 độ )
-> tam giác AHB = tam giác AHC ( ch-gn )
-> HB = HC ( 2 cạnh tương ứng )
b) Ta có: HB = HC ( tam giác AHB = tam giác AHC )
-> HB = HC = BC/2 = 16/2 =8
Ta lại có: tam giác AHB vuông tại H
-> AB2 = AH2+HB2
-> 102 = AH2+82
-> AH2 = 102 - 82
-> AH2 = 100 - 64
-> AH2 = 36
-> AH = 6
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay HC=3,2(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>FE=AH
b: EM+FN=HB/2+HC/2=BC/2=10/2=5cm
c: góc NFE=góc NFH+góc EFH
=góc NHF+góc EAH
=góc HBA+góc HAB=90 độ
=>NF vuông góc với FE(1)
góc MEF=góc MEH+góc FEH=góc MHE+góc FAH
=góc HAC+góc HCA=90 độ
=>ME vuông góc với FE(2)
Từ (1), (2) suy ra NF//ME
a, ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow\)\(BC^2=10^2\)\(\Rightarrow BC=10cm\)
b, ta có : SABC=\(\frac{1}{2}.AB.AC=\frac{1}{2}.BC.AH\)
\(\Rightarrow S_{ABC}=\frac{1}{2}.6.8=\frac{1}{2}.AH.10\)
\(\Rightarrow5.AH=24\Rightarrow AH=4,8cm\)
c,d đang giải