\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)
Giải Hệ phương trình
P/S: Trả lời nghiêm túc nhé, đừng có coppy để trả lời, ko biết làm thì miễn coment
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H/d nè:\(\frac{xy}{x+y}=\frac{6}{5}\Rightarrow\frac{x+y}{xy}=\frac{5}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\)
Tương tự 2 cái còn lại:....
Sau đó cộng 3 cái lại tìm được:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) rồi trừ đi các vế tìm x,y,z
\(\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{12}\\\frac{y+z}{yz}=\frac{5}{18}\\\frac{z+x}{zx}=\frac{13}{36}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{y}+\frac{1}{x}=\frac{5}{12}\left(1\right)\\\frac{1}{z}+\frac{1}{y}=\frac{5}{18}\left(2\right)\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\left(3\right)\end{cases}}\)
Cộng vế với vế,ta được: \(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{19}{18}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{19}{36}\)(4)
Từ (1) và (4) suy ra : \(\frac{1}{z}=\frac{1}{9}\Rightarrow z=9\)
từ (2) và (4) suy ra : \(\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
từ (3) và (4) suy ra: \(\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)
a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.
Xét \(x>y>z\)
\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)
\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)
\(\Rightarrow x=y=z\)'
\(\Rightarrow x+\frac{1}{x}=2\)
\(\Leftrightarrow x=1\)
Ta có nếu x=0 hoặc y=0 hoặc z=0 thì hpt vô nghiệm. Vậy x,y,z khác 0
\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)nghịch đảo ta có (nghịch đảo đc vì x,y,z khác 0)\(\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{6}\\\frac{y+z}{yz}=\frac{3}{4}\\\frac{z+x}{xz}=\frac{7}{12}\end{cases}}\)<=>\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\\\frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\\frac{1}{z}+\frac{1}{x}=\frac{7}{12}\end{cases}}\)
Đặt a=\(\frac{1}{x}\),b=\(\frac{1}{y}\),c=\(\frac{1}{z}\)ta có \(\hept{\begin{cases}a+b=\frac{5}{6}\\b+c=\frac{3}{4}\\c+a=\frac{7}{12}\end{cases}}\) <=>\(\hept{\begin{cases}a+b+c=\left(\frac{5}{6}+\frac{3}{4}+\frac{7}{12}\right):2\\b=\frac{5}{6}-a\\c=\frac{7}{12}-a\end{cases}}\)
Thay vào giải ta có \(a+b+c=\frac{13}{12}\)
\(a+\frac{5}{6}-a+\frac{7}{12}-a=\frac{13}{12}\) => \(a=\frac{1}{3}\)=>\(x=3\)
tiếp tục tìm đc \(b=\frac{1}{2}\)=>\(y=2\)
\(c=\frac{1}{4}\)=>\(z=4\)
Vậy nghiệm hpt là \(\hept{\begin{cases}x=3\\y=2\\z=4\end{cases}}\)
Đặt \(M=\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)
Ta có: \(\frac{xy}{x+y}=\frac{6}{5}\Leftrightarrow xy=6\&x+y=5\)
\(\Rightarrow x=5-6=\left(-1\right)\)
\(\frac{yz}{y+z}=\frac{4}{3}\Leftrightarrow yz=4\&y+z=3\)
\(\Rightarrow y=3-4=\left(-1\right)\)
\(\frac{zx}{z+x}=\frac{12}{7}\Leftrightarrow zx=12;z+x=7\Rightarrow z=7-12=-5\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-5\end{cases}}\)