Giair phương trình
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+1}=\sqrt{5}.\left(\frac{1}{\sqrt{6x-1}}+\frac{1}{\sqrt{9x-4}}\right).\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
= \(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)
=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)
=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)
=\(\frac{4\sqrt{5}}{4-5}\)
=\(\frac{4\sqrt{5}}{-1}\)
\(-4\sqrt{5}\)
Lời giải:
PT \((1)\Leftrightarrow \frac{8x}{y}+\frac{y}{x}=-12\)
Dễ thấy $\frac{x}{y}; \frac{y}{x}$ luôn cùng dấu.
Nếu với mọi $x,y>0$ mà $\frac{x}{y}>0\Rightarrow \frac{y}{x}>0$
\Rightarrow \frac{8x}{y}+\frac{y}{x}=-12>0$ (vô lý)
Do đó $\frac{x}{y}; \frac{y}{x}< 0(*)$
Từ PT(2) suy ra ĐKXĐ là:
\(9x\geq \frac{-y}{x}; y\geq \frac{-2x}{y}\). Mà $\frac{x}{y}; \frac{y}{x}< 0$ nên:
\(9x>0; y>0\Rightarrow \frac{x}{y}>0\) (mâu thuẫn với $(*)$)
Do đó HPT vô nghiệm.
có làm thì mới có ăn, không làm mà đòi có ăn chịu khó ăn ***, ăn đầu ****