Cho hình vuông ABCD có cạnh bằng căn bậc 2 của 8. M là điểm bất kì trong hình vuông. tìm gtnn (ma+mb+mc+md)
các cao thủ vào giúp mình đi nhé
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
31 tháng 12 2020
Lời giải:
Qua $M$ kẻ $EF\perp AB, CD$ với $E\in AB, F\in DC$
Dễ thấy $AEFD$ và $EBCF$ là hình chữ nhật do có 4 góc vuông.
Do đó $AE=DF; EB=CF; EF=AD=BC$
Áp dụng định lý Pitago ta có:
\(MA^2+MB^2+MC^2+MD^2=AE^2+EM^2+EB^2+EM^2+CF^2+MF^2+DF^2+MF^2\)
\(=(AE^2+DF^2)+(EB^2+CF^2)+2EM^2+2FM^2\)
\(=2AE^2+2BE^2+2EM^2+2MF^2=2[(AE^2+BE^2)+(EM^2+MF^2)]\)
Áp dụng BĐT AM-GM ta có:
\(MA^2+MB^2+MC^2+MD^2=2(AE^2+BE^2)+2(EM^2+MF^2)\geq (AE+BE)^2+(MF+EM)^2\)
\(=AB^2+EF^2=AB^2+AD^2=2\)
Ta có đpcm.
Dấu "=" xảy ra khi $M$ là tâm hình vuông.