Cho x,y,z > 0 .Tìm giá trị nhỏ nhất của \(P=\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5x^2+6xy+5y^2=4\left(x+y\right)^2+\left(x-y\right)^2\ge4\left(x+y\right)^2\)
tương tự: \(5y^2+6yz+5z^2\ge4\left(y+z\right)^2\) ;\(5z^2+6xz+5z^2\ge4\left(x+z\right)^2\)
\(\Rightarrow P\ge\dfrac{2\left(x+y\right)}{x+y+2z}+\dfrac{2\left(y+z\right)}{y+z+2x}+\dfrac{2\left(x+z\right)}{x+z+2y}\)
\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{x+y+2z}+\dfrac{y+z}{y+z+2x}+\dfrac{x+z}{x+z+2y}\)
\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\)Theo BDT Nesbit
\(\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\ge\dfrac{3}{2}\)
Vậy \(\dfrac{P}{2}\ge\dfrac{3}{2}\Leftrightarrow P\ge3\)
Min P = 3 khi x = y = z
Lời giải:
Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)
\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)
\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)
Thực hiện tương tự với những biểu thức còn lại suy ra:
\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)
\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)
\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)
\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))
Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)
Dấu bằng xảy ra khi \(x=y=z\)
\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)
\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)
\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)
\(\Rightarrow P\ge1\)
\(\Rightarrow P_{min}=1\) khi \(x=y=z\)
\(P=\sum\frac{1}{\sqrt{x^2+y^2+4x^2+2xy+y^2}}\le\sum\frac{1}{\sqrt{2xy+4x^2+2xy+y^2}}=\sum\frac{1}{2x+y}\)
\(P\le\sum\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\le\frac{1}{3}\sqrt{2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\frac{\sqrt{2}}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
Ta có 5x2+2xy+2y2=(2x+y)2+(x-y)2>=(2x+y)2
Khi đó P<=\(\frac{1}{2x+y}+\frac{1}{2y+z}+\frac{1}{2z+x}\)
Lại có \(\frac{1}{2x+y}=\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)\)
Tương tự \(\frac{1}{2y+z}\le\frac{1}{9}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{y}\right)\)
\(\frac{1}{2z+x}\le\frac{1}{9}\left(\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)
Khi đó P<=\(\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{1}{3}\sqrt{3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\le\frac{\sqrt{3}}{3}\)
Dấu bằng xảy ra khi x=y=z=\(\frac{\sqrt{3}}{3}\)
HAY
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)
Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao
khi đó:
\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)
Dấu "=" xảy ra tại x=y=z=1
Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)
\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )
Xét 5x - y \(\le\)0 \(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)0 \(\Rightarrow\)BĐT đã được chứng minh
Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :
\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)
\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)
\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)
\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)
\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )
( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\))
Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\); \(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)
Cộng từng vế 3 BĐT lại với nhau, ta được :
\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)
\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)
Dấu "=' xảy ra khi x = y = z = 1
Vậy BĐT đã được chứng minh
\(1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)
\(P=\sum\frac{1}{\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}}\le\sum\frac{1}{\sqrt{\left(2x+y\right)^2}}=\sum\frac{1}{2x+y}\)
\(P\le\sum\left(\frac{1}{x+x+y}\right)\le\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{\sqrt{3}}{3}\)
\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)
cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé
Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)
\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)
Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)
Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy:
(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)
Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)
Đẳng thức xảy ra khi x = y = z