K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

a) pt hoành độ giao điểm: \(x^2-mx-8=0\)

\(ac=1.-8=-8< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt 

b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=-8\left(2\right)\end{matrix}\right.\)

Vì \(x_1x_2=-8< 0\Rightarrow x_1,x_2\) trái dấu

Ta có: \(x_1+\sqrt{x_2}=0\Rightarrow x_1=-\sqrt{x_2}< 0\Rightarrow x_2>0\)

Thế vào (2):\(-x_2\sqrt{x_2}=-8\Rightarrow x_2\sqrt{x_2}=8\Leftrightarrow\left(\sqrt{x_2}\right)^3=8\)

\(\Rightarrow\sqrt{x_2}=2\Rightarrow x_2=4\Rightarrow x_1=-2\Rightarrow x_1+x_2=2=m\)

12 tháng 3 2023

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx+5\)

\(x^2-mx-5=0\)

\(\Delta=m^2+20\)

Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt

Câu tìm m bạn ghi rõ đề ra nhá

12 tháng 3 2023

đề ns z á chắc đề sai đâu r cảm ơn bn nhiều 

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9

a: PTHĐGĐ là;

x^2-(2m-3)x+m^2-3m=0

Δ=4m^2-12m+9-4m^2+12m=9>0

=>(P) luôn cắt (d) tại hai điểm pb

b: |x1|+|x2|=3

=>x1^2+x2^2+2|x1x2|=9

=>(2m-3)^2-2(m^2-3m)+2|m^2-3m|=9

TH1: m>=3 hoặc m<=0

=>(2m-3)^2=9

=>m=3(nhận) hoặc m=0(nhận)

Th2: 0<m<3

=>4m^2-12m+9-4(m^2-3m)=9

=>4m^2-12m-4m^2+12m=0

=>0m=0(luôn đúng)

7 tháng 1 2018

Xét phương trình hoành độ giao điểm của (d) và (P):

x 2 = m x + 5 ⇔ x 2 − m x − 5 = 0 .

Ta có tích hệ số  a c = − 5 < 0  nên phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi m hay thẳng (d) cắt parabol (P) tại hai điểm phân biệt với mọi m.

Theo hệ thức Vi-ét ta có x 1 + x 2 = m x 1 x 2 = − 5 Ta có:

x 1 > x 2 ⇔ x 1 2 > x 2 2 ⇔ x 1 2 − x 2 2 > 0 ⇒ x 1 + x 2 x 1 − x 2 > 0

Theo giả thiết:  x 1 < x 2 ⇔ x 1 − x 2 < 0  do đó  x 1 + x 2 < 0 ⇔ m < 0 .

Vậy thỏa mãn yêu cầu bài toán.

a: Phương trình hoành độ giao điểm là:

x^2-mx-4=0

a*c<0

=>(d) luôn cắt (P) tại hai điểm phân biệt

c: x1^2+mx2=6m-5

=>x1^2+x2(x1+x2)=6m-5

=>(x1+x2)^2-x1x2=6m-5

=>m^2-(-4)-6m+5=0

=>m^2-6m+9=0

=>m=3

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-4=0\)

\(\Leftrightarrow3x^2-2mx-8=0\)

ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)

hay m=6 hoặc m=-6

11 tháng 5 2022

giúp mình cả câu a được k bạn ._.

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt