K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

17 tháng 1 2022

\(AM=\frac{BC}{2}\Rightarrow AM=BM=CM\)

=> tg ABM cân tại M \(\Rightarrow\widehat{ABC}=\widehat{BAM}\)

Và tg ACM cân tại M \(\Rightarrow\widehat{ACB}=\widehat{CAM}\)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)

Mà \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\)

=> tg ABC vuông tại A

3 tháng 2 2022

A B C M

ta có: AM = 1/2 BC => AM = BM, CM

xét tam giác ABM có : AM = BM

=> ABM cân tại M

xét tam giác ACM có : AM = CM

=> ACM cân tại M

Mà góc AMB + AMC = 180 độ ( kề bù )

=> góc B + góc BAM + góc C + góc CAM = 180 độ

Mà góc B = góc BAM

     góc C = góc CAM

=> BAM + CAM = 90 độ

=> tam giác ABC cân tại A

2 tháng 1 2016

kẻ tia đối của tia MA và bằng nó là ra

2 tháng 1 2016

Gọi H là trung điểm của AC. Ta chứng minh được: MH là đường trung bình của tam giác ABC. Suy ra: MH song song với AB. => MH vuông góc với AC ( vì AB vuông góc với AC)

Xét tam giác AMC có MH vừa là đường cao, vừa là đường trung tuyến ứng với AC nên tam giác Amc cân tại M. => AM=MC (1)

Vì tam giác AMC cân tại M nên góc MAC = góc MCA. Ta có: MAC+BAM=90 và ACM+ABC=90 mà MAC=MCA ( chứng minh trên).

=> BAM=ABC => tam giác ABM cân tại M => MA=MB (2)

Từ (1) và (2) => AM=1/2BC