K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)

nên \(\widehat{IBC}+\widehat{ICB}=60^0\)

hay \(\widehat{BIC}=120^0\)

b: Xét ΔBEI và ΔBFI có 

\(\widehat{IBE}=\widehat{IBF}\)

BI chung

\(\widehat{EIB}=\widehat{FIB}\)

Do đó: ΔBEI=ΔBFI

1 tháng 6 2017

A B C 60 I E D F

a)

Áp dụng định lí tổng 3 góc trong tam giác ta có:

\(\widehat {A}\) + \(\widehat {B} + \widehat {C}\) = 180°

hay: 60° + \(\widehat {B} + \widehat {C}\) = 180°

=> \(\widehat {B} + \widehat {C}\) = 180 ° - 60 ° = 120°

\(\widehat {IBF} = \widehat {IBE}; \widehat {ICF} = \widehat {ICD}\) nên:

\(\widehat {IBF} + \widehat {ICF} = 120° : 2 = 60°\)

Áp dụng định lí tổng 3 góc trong tam giác ta có:

\(\widehat {BIC} = 180° - (\widehat {IBF} + \widehat {ICF})\)

\(\widehat {BIC}=180° - 60° = 120°\)

Vậy \(\widehat {BIC} = 120°\)

b)

Vì IF là tia phân giác của góc BIC nên:

\(\widehat {BIF} = \widehat {FIC} = 120° : 2 = 60°\)

Vì EIB và BIC là 2 góc kề bù nên:

\(\widehat {EIB} = 180° - BIC\)

\(\widehat {EIB} = 180° - 120° = 60°\)

Xét 2 tam giác BEI và BFI ta có:

\(\widehat {EBI} = \widehat {IBF} (gt)\)

BI là cạnh chung

\(\widehat {EIB} = \widehat {BIF} = 60°\) (cmt)

Vậy \(\Delta BEI=\Delta BFI\) (g-c-g).

=> BE = BF (2 cạnh tương ứng).

Ta có:

\(\widehat {FIC} = 60° (cmt)\)

\(\widehat {DIC} + \widehat {BIC} = 180°\) (2 góc kề bù)

hay: \(\widehat {DIC} + 120° = 180°\)

=> \(\widehat {DIC} = 180° - 120° = 60°\)

Xét 2 tam giác DIC và FIC ta có:

\(\widehat {DCI} = \widehat {ICF} (gt)\)

IC là cạnh chung

\(\widehat {FIC} = \widehat {DIC} = 60° (cmt)\)

Vậy \(\Delta DIC=\Delta FIC\) (g-c-g).

=> CD = CF (2 cạnh tương ứng).

Ta có:

BC = BF + CF

Mà BF = BE; CF = CD nên:

BE + CD = BC (đpcm).

27 tháng 2 2020

ban ơi đpcm là gì vậy

12 tháng 8 2021

BC = AD (AO-BR)

a) 

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

b) Xét tg ABC có:

+ BD là đườg cao (BD vuông góc AC)

+ CE là đg cao (CE vuông góc AB)

Mà BD giao CE tại I (gt)

=> I là trực tâm

=> AI là đường cao

Xét tg ABC cân tai A có: AI là đường cao (cmt)

=> AI cũng là đường pg góc BAC ( Tc tg cân)

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)