Cho tam giác ABC có góc A=60 độ, kẻ BD, CE là các tia pg của góc B, góc C(D thuộc AC: E thuộc AB). BD cắt CE tại I.
a)Tính góc BIC
b)Kẻ IF là các tia pg của góc BIC(F thuộc BC). CMR:
+Tam giác BEI = tam giác BFI
+BE+CD=BC
ID=IE=IF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
nên \(\widehat{IBC}+\widehat{ICB}=60^0\)
hay \(\widehat{BIC}=120^0\)
b: Xét ΔBEI và ΔBFI có
\(\widehat{IBE}=\widehat{IBF}\)
BI chung
\(\widehat{EIB}=\widehat{FIB}\)
Do đó: ΔBEI=ΔBFI
a)
Áp dụng định lí tổng 3 góc trong tam giác ta có:
\(\widehat {A}\) + \(\widehat {B} + \widehat {C}\) = 180°
hay: 60° + \(\widehat {B} + \widehat {C}\) = 180°
=> \(\widehat {B} + \widehat {C}\) = 180 ° - 60 ° = 120°
Vì \(\widehat {IBF} = \widehat {IBE}; \widehat {ICF} = \widehat {ICD}\) nên:
\(\widehat {IBF} + \widehat {ICF} = 120° : 2 = 60°\)
Áp dụng định lí tổng 3 góc trong tam giác ta có:
\(\widehat {BIC} = 180° - (\widehat {IBF} + \widehat {ICF})\)
\(\widehat {BIC}=180° - 60° = 120°\)
Vậy \(\widehat {BIC} = 120°\)
b)
Vì IF là tia phân giác của góc BIC nên:
\(\widehat {BIF} = \widehat {FIC} = 120° : 2 = 60°\)
Vì EIB và BIC là 2 góc kề bù nên:
\(\widehat {EIB} = 180° - BIC\)
\(\widehat {EIB} = 180° - 120° = 60°\)
Xét 2 tam giác BEI và BFI ta có:
\(\widehat {EBI} = \widehat {IBF} (gt)\)
BI là cạnh chung
\(\widehat {EIB} = \widehat {BIF} = 60°\) (cmt)
Vậy \(\Delta BEI=\Delta BFI\) (g-c-g).
=> BE = BF (2 cạnh tương ứng).
Ta có:
\(\widehat {FIC} = 60° (cmt)\)
\(\widehat {DIC} + \widehat {BIC} = 180°\) (2 góc kề bù)
hay: \(\widehat {DIC} + 120° = 180°\)
=> \(\widehat {DIC} = 180° - 120° = 60°\)
Xét 2 tam giác DIC và FIC ta có:
\(\widehat {DCI} = \widehat {ICF} (gt)\)
IC là cạnh chung
\(\widehat {FIC} = \widehat {DIC} = 60° (cmt)\)
Vậy \(\Delta DIC=\Delta FIC\) (g-c-g).
=> CD = CF (2 cạnh tương ứng).
Ta có:
BC = BF + CF
Mà BF = BE; CF = CD nên:
BE + CD = BC (đpcm).
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: BD=CE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)