phân tích đa thức thành nhân tử.
1) 3x^2 + 2x – 1
2) x^3 + 6x^2 + 11x + 6
3) x^4 + 2x^2 – 3
4) ab + ac +b^2 + 2bc + c^2
5) a^3 – b^3 + c^3 + 3abc
hộ mk cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
1,\(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)\)
\(\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+2x^2+4x^2+8x+3x+6\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+4x+3\right)\)
\(=\left(x+2\right)\left(x^2+x+3x+3\right)\)
\(=\left(x+2\right)\text{[}x\left(x+1\right)+3\left(x+1\right)\text{]}\)
\(=\left(x+2\right)\left(x+1\right)\left(x+3\right)\)
3,\(x^4+2x^2-3=x^4-x^2+3x^2-3\)
\(=x^2\left(x^2-1\right)+3\left(x^2-1\right)\)
\(\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4,\(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
3x^2+2x-1
=3x^2+3x-x-1
=3x(x+1)-(x+1)
=(x+1)(3x-1)
x^3+6x^2+11x+6
=x^3+5x^2+6x+x^2+5x+6
=x(x^2+5x+6)+(x^2+5x+6)
=(x+1)(x^2+5x+6)
=(x+1)(x^2+3x+2x+6)
=(x+1)(x+2)(x+3)
x^4+2x^2-3
=x^4-x^2+3x^2-3
=x^2(x^2-1)+3(x^2-1)
=(x^2-1)(x^2+3)
=(x+1)(x-1)(x^2+3)
ab+ac+b^2+2bc+c^2
=a(b+c)+(b+c)^2
=(b+c)(a+b+c)
a^3-b^3+c^3+3abc
=(a-b)^3+3ab(a-b)+c^3+3abc
=(a-b+c)^3-3(a-b)c(a-b+c)+3ab(a-b+c)
=(a-b+c)(a^2+b^2+c^2-2ab+2ac-2bc-3ac+3...
=(a-b+c)(a^2+b^2+c^2+ab+bc-ca)
=1/2.(a-b+c)(a^2+2ab+b^2+b^2+2bc+c^2+c...
=1/2.(a-b+c)[(a+b)^2+(b+c)^2+(c-a)^2]
3, \(=x^4-x^2+3x^2-3\)
\(=x^2\left(x^2-1\right)+3\left(x^2-1\right)\)
\(=\left(x^2+3\right)\left(x-1\right)\left(x+1\right)\)
5, nhận xét : \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\Rightarrow a^3-b^3=\left(a-b\right)^3+3a^2b-3ab^2\)
thay vào đầu bài ta có: \(\left(a-b\right)^3+c^3+3a^2b-3ab^2+3abc\)
\(=\left(a-b+c\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)
\(=\left(a-b+c\right)\left(a^2+b^2+c^2+ab-ac+bc\right)\)
1)\(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)=\left(3x-1\right)\left(x+1\right)\)
2)\(x^3+6x^2+11x+6=x^3+3x^2+3x^2+9x+2x+6\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)\(=\left(x^2+3x+2\right)\left(x+3\right)\)
\(=\left(x^2+2x+x+2\right)\left(x+3\right)\)\(=\left[x\left(x+2\right)+\left(x+2\right)\right]\left(x+3\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
3)\(x^4+2x^2-3=x^4+3x^2-x^2-3=x^2\left(x^2+3\right)-\left(x^2+3\right)=\left(x^2-1\right)\left(x^3+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4)\(ab+ac+b^2+2bc+c^2=a\left(b+c\right)+\left(b+c\right)^2=\left(b+c\right)\left(a+b+c\right)\)
5) câu này sau khi phân tích được (a-b+c)(a2+b2+c2+ab+bc-ac)
\(a,3x^2+2x-1\)
\(\Leftrightarrow3x^2+3x-x-1\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)\)
\(b,x^3+6x^2+11x+6\)
\(\Leftrightarrow x^3+3x^2+3x^2+9x+2x+6\)
\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+6\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
\(c,x^4+2x^2-3\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+3x^2-3\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)+3\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+3x+3\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
\(d,ab+ac+b^2+2bc+c^2\)
\(\Leftrightarrow a\left(b+c\right)+\left(b+c\right)^2\)
\(\Leftrightarrow\left(b+c\right)\left(a+b+c\right)\)
3x^2+2x-1=3x^2+3x-x-1=3x(x+1)-(x+1)=(x+1)(3x-1)
x^4+2x^2-3=x^4+3x^2-x^2 -3=x^2(x^2+3)-(x^2+3)=(x^2+3)(x^2-1)
a]
x^3 + 6x^2 + 11x + 6
= x^3 + x^2 + 5x^2 + 5x + 6x + 6
= x^2(x + 1) + 5x(x + 1) + 6(x + 1)
= (x + 1)(x^2 + 5x + 6)
= (x + 1)(x^2 + 2x + 3x + 6)
= (x + 1)[x(x + 2) + 3(x + 2)
= (x + 1)(x + 2)(x + 3)
b thiếu đề bài nè x^4 - 2x^2 - 3 = 0
(x^2)(x^2)-2(x^2)-3=0
(x^2)(x^2)-3(x^2)+1(x^2)-3=0
(x^2)(x^2-3) + 1(x^2-3) = 0
(x^2-3) (x^2+1)=0
c bó tay
d (a3 + b3 + c3) - 3abc
= ( (a+b+c)3 - 3ab(a+b) -3bc(b+c) -3ac(a+c) - 6abc) - 3abc
= (a+b+c)3 - 3ab(a+b) - 3bc(b+c) - 3ac(a+c) - 9abc
= (a+b+c)3
- 3ab(a+b) - 3abc
- 3bc(b+c) - 3abc
- 3ac(a+c) - 3abc
= (a+b+c)3
- 3ab(a+b+c)
- 3bc(a+b+c)
- 3ac(a+b+c)
= (a+b+c)( (a+b+c)2 - 3ab -3bc 3ac)
=(a+b+c)( a2 + b2 + c2 + 2ab +2bc + 2ca -3ab - 3bc -3ac)
=(a+b+c) (a2 + b2 + c2 - ab - bc -ac)
ý d hình như đề sai
chị ui kết bạn với em đi em hết lượt kết bạn rùi
em học lớp 5
1) \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
3) \(x^4+2x^2-3\)
\(=\left(x^2+1\right)^2-4\)
\(=\left(x^2+1-2\right)\left(x^2+1+2\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4) \(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
1, \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+6x^2+11x+6\)
\(=\left(x^3+3x^2\right)+\left(3x^2+9x\right)+\left(2x+6\right)\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)