Cho các số a,b,c,d nguyên dương đôi một khác nhau và thỏa mãn : \(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}\)=6 . CM: A= abcd là số chính phương với abcd là số có bốn chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
<=> \(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
<=>\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
<=>\(b.\frac{b+c-a-b}{\left(a+b\right)\left(b+c\right)}+d.\frac{d+a-c-d}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\frac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\left(c-a\right).\frac{b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)}=0\)
<=> \(\orbr{\begin{cases}c-a=0\\b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\end{cases}}\)
<=>\(\orbr{\begin{cases}c=a\left(KTM\right)\\abc-acd+bd^2-b^2d=0\end{cases}}\)
<=>\(\left(b-d\right)\left(ac-bd\right)=0< =>\orbr{\begin{cases}b-d=0\\ac-bd=0\end{cases}< =>\orbr{\begin{cases}b=d\left(KTM\right)\\ac=bd\end{cases}}}\)
=> \(abcd=\left(ac\right)^2\) => \(abcd\)là số chính phương ( ĐPCM)
----Tk mình nha----
~~Hk tốt~~
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=>a=b=c=d
Thay vào biểu thức A ,ta đc:
\(A=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Vậy A=2
Vì a/b=1=>a=b;b/c=1=>b=c;c/d=1=> c=d;d/a=1=>a=d
=>a=b=c=d
OK?~_~
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Thỏa mãn.
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Mình không chắc câu này lắm nhưng thôi giải dùm bạn vậy :((
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\)\(1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Leftrightarrow\)\(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\)\(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\)\(abc-acd+bd^2-b^2d=0\)
\(\Leftrightarrow\)\(\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\)\(ac-bd=0\Leftrightarrow ac=bd\left(b\ne d\right)\)
Vậy bạn tự kết luận nha
\(\Leftrightarrow1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{d}{d+a}=2\)
\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)+d\left(a-c\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)-d\left(c-a\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(bc+bd\right)\left(d+a\right)-\left(da+db\right)\left(b+c\right)=0\)
\(\Leftrightarrow bcd+bca+bd^2+bda-abd-adc-db^2-dbc=0\)
\(\Leftrightarrow bca-acd+bd^2-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac-bd=0\)
\(\Leftrightarrow ac=bd\)
\(\Leftrightarrow\left(ac\right)^2=abcd\)\(\left(đpcm\right)\)
dành cho người không hiểu bài trên
\(#huybip#\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)