K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

\(\frac{x}{3}=\frac{y}{5}\)\(\Rightarrow x=\frac{3y}{5}\)

Thay vào biểu thức A ta được:

\(A=\frac{5.\left(\frac{3y}{5}\right)^2+3y^2}{10.\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\frac{9y^2+15y^2}{5}}{\frac{18y^2-15y^2}{5}}=\frac{24y^2}{3y^2}=8\)

8 tháng 1 2018

Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k,y=5k\)

Ta có: \(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{k^2\left(45+75\right)}{k^2\left(90-75\right)}=\frac{120k^2}{15k^2}=8\)

18 tháng 10 2021

Đặt \(\frac{x}{3}=\frac{y}{5}=k\left(k≠0\right)\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\Rightarrow A=\frac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\)

\(\Rightarrow A=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\left(\text{do k ≠ 0}\right)\)

12 tháng 12 2021

qqqqqqqwertyu

16 tháng 8 2017
Với x/3= y/5 => 5x=3y => x=3y /5 =>x2 = 9y2 /25 . Thay vào A ta được: A= (5. 9y2 /25 + 3y2) / (10. 9y2 /5 -3y2) = (9y2 /5 +3y2) / (18y2 /5 -3y2) = (24/5y2) / (3/5y2) => 24/5 : 3/5 = 8 Vậy A=8
23 tháng 8 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=n\Rightarrow x=3n;y=5n\)

\(\Rightarrow A=\frac{5.3^2n^2+3.5^2n^2}{10.3^2n^2-3.5^2n^2}=\frac{n^2\left(45+75\right)}{n^2\left(90-75\right)}=\frac{n^2.120}{n^2.25}=\frac{24}{5}\)

23 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)

Thay 3y = 5x ; ta được: 

\(A=\frac{5x^2+5x^2}{10x^2-5x^2}=\frac{2\times5x^2}{2\times5x^2-5x^2}=\frac{2\times5x^2}{5x^2\times\left(2-1\right)}=\frac{2\times5x^2}{5x^2\times1}=2\)  

14 tháng 5 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

\(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}=\frac{5.3^2.k^2+3.5^2.k^2}{10.3^2.k^2-3.5^2.k^2}\)

\(A=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{\left(45+75\right).k^2}{\left(90-75\right).k^2}=\frac{120k^2}{15k^2}=\frac{120}{15}=8\)

Vậy A=8
 

12 tháng 3 2017

Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\) Thay vào P ta được :

\(P=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{15k^2\left(3+5\right)}{15k^2\left(6-5\right)}=\frac{3+5}{6-5}=\frac{8}{1}=8\)

Vậy \(P=8\)

17 tháng 8 2017

ta có: x/3=y/5 suy ra x^2 /9=y^2/25

A[s dụng tính chất dãy tỉ số bằng nhau ta có: 

x^2/9=y^2/25=(5 x^2 + 3 y^2)/(45+75)=(10 x^2 -3 y^2)/(90-75) do đó (5 x^2 + 3y^2)/(10 x^2 - 3 y^2)=(45+75)/(90-75)=8

7 tháng 7 2017

Ta có: \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\)

\(\Rightarrow x=3k\)

\(y=5k\)

Khi đó \(P=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)

\(=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}\)

\(=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8.\)

7 tháng 7 2017

\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow x=3k;y=5k\)

\(P=\dfrac{5x^2+3y^2}{10x^2-3y^2}\)

\(P=\dfrac{5.3k^2+3.5k^2}{10.3k^2-3.5k^2}\)

\(P=\dfrac{15k^2+15k^2}{30k^2-15k^2}\)

\(P=\dfrac{30k^2}{15k^2}=2\)

19 tháng 3 2018

đặt \(\frac{x}{3}=\frac{y}{5}=k\)(k khac 0)

 Từ  \(\frac{x}{3}=k\)=>x=3k

        \(\frac{y}{5}=k\)=>y=5k

roi ban thay vao tinh