K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

a) Gọi Q là giao điểm của HD và FE

Xét tam giác FHD ta có:

FQ là đcao(D đối xứng với H qua FE)

FQ là đg trung tuyến HD(D đối xứng với H qua FE;Q là giao điểm của HD và FE)

=> tam giác FHD cân tại F

Ta có:

\(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)

\(\widehat{ABC}=\widehat{FDB}\) (2 góc đồng vị và FD//AC)

=> \(\widehat{ACB}=\widehat{FDB}\)

=> tam giác FBD cân tại F

=> FB=FD

Mà FH=FD(tam giác FHD cân tại F)

Nên FB=FH

=> tam giác BHF cân tại F

7 tháng 1 2018

cho mk cái hình đi bạn mk k vẽ đc hình

22 tháng 3 2016

A B C F E a 1 1 1 D 2

ta có: EF//BD

FB//ED 

suy ra; EB=ED; EF=BD

mà DB=DC suy ra EF=DC

6F1=^B( 2 góc đồng vị)

^B=^D1( 2 góc đồng vị)

suy ra ^F1=^D1

ta có: ^E1=^D2(2 góc đồng vị)

^C=^D2( 2 góc đồng vị)

suy ra ^E1=^C

xét tam giác CDE và tam giác EFA có:

EF=DC(cmt)

^F1=^D1(cmt)

^E1=^C(cmt)

suy ra tam giác CDE=tam giác EFA(g.c.g)

22 tháng 3 2016

ta có: EF//BD

FB//ED 

suy ra; EB=ED; EF=BD

mà DB=DC suy ra EF=DC

6F1=^B( 2 góc đồng vị)

^B=^D1( 2 góc đồng vị)

suy ra ^F1=^D1

ta có: ^E1=^D2(2 góc đồng vị)

^C=^D2( 2 góc đồng vị)

suy ra ^E1=^C

xét tam giác CDE và tam giác EFA có:

EF=DC(cmt)

^F1=^D1(cmt)

^E1=^C(cmt)

suy ra tam giác CDE=tam giác EFA(g.c.g)

18 tháng 11 2022

a: Xét ΔBNQ có

C là trung điểm của BQ

CA//NQ

Do đó: A là trung điểm của NB

Xét ΔCPM có

B là trung điểm của CP

CA//MP

DO đó: A là trung điểm của CM

Xét tứ giác BMNC có

A là trung điểm chung của BN và MC

nên BMNC là hình bình hành

b: Để ANKM là hình bình hành

nên AM//KN và AN//KM

=>AB//MK và AB=MK

=>ABMK là hình bình hành

=>AI//BM

Xét ΔCBM có

A là trung điểm của CA

AI//BM

DO đó; I là trung điểm của BC

 

19 tháng 4 2017

Ta chứng minh được AEDF là hình bình hành Þ AD Ç È = I. I là trung điểm của AD và EF. Suy ra E đối xứng với F qua I