K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ

- Nếu n lẽ thì  n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn

-  Ta dặt n = 2k,  k   ∈   N *

+   Nếu  k chia hết cho 3 thì n chia hết cho 6

+   Nếu k = 3p + 1 ,  p   ∈   N *  thì 3 số theo thứ tự bằng a, a + 6p + 2,

a + 12p + 4

+  Do a là số lẽ nên nếu a chia cho 3 dư 1 thì  a + 6p + 2 chia hết cho 3,

 Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3

+  Nếu k = 3p + 2   p   ∈   N *  thì 3 số theo thứ tự bằng

 

        a, a + 6p +4, a + 12p +8

với a chia cho 3 dư 1 thì  a + 12p +8  chia hết cho 3

với a chia cho 3 dư 2 thì  a + 6p +4  chia hếtt cho 3

Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hếtt cho 6.

25 tháng 9 2021

thiếu dữ liệu ko tính đc vd a = 12 k = 6 thì vẫn chia hết 
1 đề bài sai 
2 thiếu dữ kiện

16 tháng 5 2018

Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.

• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)

• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:

   + Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3

   + Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3

   + Nếu a và a + 2k có cùng số dư, thì suy ra:

( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3

Vậy, ta luôn có k chia hết cho 3 (2)

Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.

Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:

• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.

• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.

2 tháng 1 2015

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

3 tháng 1 2015

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

27 tháng 2 2016

Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).

Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.

27 tháng 2 2016

Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).

Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.

11 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)

$$ k chia hết cho 6 (đpcm).

11 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn ﴾tức là k chia hết cho 2﴿

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

﴾vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2﴿.

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6