Cho tam giác ABC cân tại A. Vẽ tia phân giác BD (D thuộc BC). Vẽ phân giác DM của góc BDC (M thuộc BC). Đường phân giác của góc ADB cắt tia BC tại N. Chứng minh BD = 1/2 MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để CM \(HM^2=HB.HC\):
Trên đường thẳng qua \(C\) vuông góc \(BC\) ta chọn điểm \(T\) sao cho \(TM\) là phân giác \(BTC\).
Do có hệ thức \(\frac{MB}{MC}=\frac{DB}{DC}\) suy ra luôn \(TN\) là phân giác ngoài của \(BTC\).
Vậy tam giác \(MTN\) là vuông nên \(HT=HN\), hay \(\widehat{HTN}=\widehat{HNT}=\widehat{MTC}=\widehat{MTB}\).
Suy ra \(\widehat{BTH}\) vuông và ta có \(HB.HC=HT^2=HN^2\).
P/S: Nếu cho 4 điểm \(A,B,C,D\) thẳng hàng theo thứ tự đó và thoả \(\frac{BA}{BC}=\frac{DA}{DC}\) thì 4 điểm này gọi là hàng điều hoà (giống chân đường phân giác trong và ngoài ấy).
Khi đó, nếu gọi \(T\) là trung điểm \(BD\) thì ta có hệ thức: \(TB^2=TA.TC\) và \(CD.CB=CA.CT\).
(Sao mấy bài hình học của bạn thấy nhiều "hàng điều hoà" thế?)
Gọi \(H\) là trung điểm \(MN\). CM được \(HC.HB=HM^2=HD^2\).
Tức là tam giác \(HCD\) và \(HDB\) đồng dạng, cho ta 2 góc sau bằng nhau: \(HDC=HBD=\alpha\).
Do \(ACB=2\alpha\) nên \(CHD=\alpha=CBD\).
Vậy tam giác \(BDH\) cân tại \(D\) và ta suy ra đpcm.